首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G, denoted by a′(G), is the least number of colors in an acyclic edge coloring of G. Alon et al. conjectured that a′(G) ⩽ Δ(G) + 2 for any graphs. For planar graphs G with girth g(G), we prove that a′(G) ⩽ max{2Δ(G) − 2, Δ(G) + 22} if g(G) ⩾ 3, a′(G) ⩽ Δ(G) + 2 if g(G) ⩾ 5, a′(G) ⩽ Δ(G) + 1 if g(G) ⩾ 7, and a′(G) = Δ(G) if g(G) ⩾ 16 and Δ(G) ⩾ 3. For series-parallel graphs G, we have a′(G) ⩽ Δ(G) + 1. This work was supported by National Natural Science Foundation of China (Grant No. 10871119) and Natural Science Foundation of Shandong Province (Grant No. Y2008A20).  相似文献   

2.
A proper edge coloring of a graph G is called adjacent vertex-distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the coloring set of edges incident with u is not equal to the coloring set of edges incident with v, where uvE(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by x Aa (G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. If a graph G has an adjacent vertex distinguishing acyclic edge coloring, then G is called adjacent vertex distinguishing acyclic. In this paper, we obtain adjacent vertex-distinguishing acyclic edge coloring of some graphs and put forward some conjectures.  相似文献   

3.
A proper k-edge coloring of a graph G is called adjacent vertex distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the color set of edges incident to u is not equal to the color set of edges incident to υ, where E(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by χ aa (G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. In this paper we prove that if G(V, E) is a graph with no isolated edges, then χ aa (G) ≤ 32Δ. Supported by the Natural Science Foundation of Gansu Province (3ZS051-A25-025)  相似文献   

4.
An acyclic vertex coloring of a graph is a proper vertex coloring such that there are no bichromatic cycles. The acyclic chromatic number of G, denoted a(G), is the minimum number of colors required for acyclic vertex coloring of graph G. For a family F of graphs, the acyclic chromatic number of F, denoted by a(F), is defined as the maximum a(G) over all the graphs GF. In this paper we show that a(F)=8 where F is the family of graphs of maximum degree 5 and give a linear time algorithm to achieve this bound.  相似文献   

5.
A proper total coloring of a graph G such that there are at least 4 colors on those vertices and edges incident with a cycle of G, is called acyclic total coloring. The acyclic total chromatic number of G is the least number of colors in an acyclic total coloring of G. In this paper, it is proved that the acyclic total chromatic number of a planar graph G of maximum degree at least k and without l cycles is at most Δ(G) + 2 if (k, l) ∈ {(6, 3), (7, 4), (6, 5), (7, 6)}.  相似文献   

6.
A proper edge coloring of a graph G is called acyclic if there is no 2‐colored cycle in G. The acyclic edge chromatic number of G, denoted by χ(G), is the least number of colors in an acyclic edge coloring of G. In this paper, we determine completely the acyclic edge chromatic number of outerplanar graphs. The proof is constructive and supplies a polynomial time algorithm to acyclically color the edges of any outerplanar graph G using χ(G) colors. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 22–36, 2010  相似文献   

7.
A proper edge coloring of a graph G is said to be acyclic if there is no bicolored cycle in G.The acyclic edge chromatic number of G,denoted byχ′a(G),is the smallest number of colors in an acyclic edge coloring of G.Let G be a planar graph with maximum degree.In this paper,we show thatχ′a(G)+2,if G has no adjacent i-and j-cycles for any i,j∈{3,4,5},which implies a result of Hou,Liu and Wu(2012);andχ′a(G)+3,if G has no adjacent i-and j-cycles for any i,j∈{3,4,6}.  相似文献   

8.
A proper coloring of the edges of a graph G is called acyclic if there is no 2‐colored cycle in G. The acyclic edge chromatic number of G, denoted by a′(G), is the least number of colors in an acyclic edge coloring of G. For certain graphs G, a′(G) ≥ Δ(G) + 2 where Δ(G) is the maximum degree in G. It is known that a′(G) ≤ 16 Δ(G) for any graph G. We prove that there exists a constant c such that a′(G) ≤ Δ(G) + 2 for any graph G whose girth is at least cΔ(G) log Δ(G), and conjecture that this upper bound for a′(G) holds for all graphs G. We also show that a′(G) ≤ Δ + 2 for almost all Δ‐regular graphs. © 2001 John Wiley & Sons, Inc. J Graph Theory 37: 157–167, 2001  相似文献   

9.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a′(G). It was conjectured by Alon, Sudakov and Zaks (and much earlier by Fiamcik) that a′(G) ? Δ + 2, where Δ = Δ(G) denotes the maximum degree of the graph. If every induced subgraph H of G satisfies the condition |E(H)| ? 2|V(H)|?1, we say that the graph G satisfies Property A. In this article, we prove that if G satisfies Property A, then a′(G) ? Δ + 3. Triangle‐free planar graphs satisfy Property A. We infer that a′(G) ? Δ + 3, if G is a triangle‐free planar graph. Another class of graph which satisfies Property A is 2‐fold graphs (union of two forests). © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

10.
A proper vertex coloring of a graph G=(V,E) is acyclic if G contains no bicolored cycle. Given a list assignment L={L(v)∣vV} of G, we say G is acyclically L-list colorable if there exists a proper acyclic coloring π of G such that π(v)∈L(v) for all vV. If G is acyclically L-list colorable for any list assignment with |L(v)|≥k for all vV, then G is acyclically k-choosable. In this paper we prove that planar graphs without 4, 7, and 8-cycles are acyclically 4-choosable.  相似文献   

11.
Min Chen 《Discrete Mathematics》2008,308(24):6216-6225
A proper vertex coloring of a graph G=(V,E) is acyclic if G contains no bicolored cycle. A graph G is acyclically L-list colorable if for a given list assignment L={L(v):vV}, there exists a proper acyclic coloring π of G such that π(v)∈L(v) for all vV. If G is acyclically L-list colorable for any list assignment with |L(v)|≥k for all vV, then G is acyclically k-choosable. In this paper we prove that every planar graph without 4-cycles and without two 3-cycles at distance less than 3 is acyclically 5-choosable. This improves a result in [M. Montassier, P. Ochem, A. Raspaud, On the acyclic choosability of graphs, J. Graph Theory 51 (2006) 281-300], which says that planar graphs of girth at least 5 are acyclically 5-choosable.  相似文献   

12.
On total chromatic number of planar graphs without 4-cycles   总被引:5,自引:0,他引:5  
Let G be a simple graph with maximum degree A(G) and total chromatic number Xve(G). Vizing conjectured thatΔ(G) 1≤Xve(G)≤Δ(G) 2 (Total Chromatic Conjecture). Even for planar graphs, this conjecture has not been settled yet. The unsettled difficult case for planar graphs isΔ(G) = 6. This paper shows that if G is a simple planar graph with maximum degree 6 and without 4-cycles, then Xve(G)≤8. Together with the previous results on this topic, this shows that every simple planar graph without 4-cycles satisfies the Total Chromatic Conjecture.  相似文献   

13.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a′(G). It was conjectured by Alon, Sudakov, and Zaks that for any simple and finite graph G, a′(G)?Δ + 2, where Δ=Δ(G) denotes the maximum degree of G. We prove the conjecture for connected graphs with Δ(G)?4, with the additional restriction that m?2n?1, where n is the number of vertices and m is the number of edges in G. Note that for any graph G, m?2n, when Δ(G)?4. It follows that for any graph G if Δ(G)?4, then a′(G)?7. © 2009 Wiley Periodicals, Inc. J Graph Theory 61: 192–209, 2009  相似文献   

14.
A proper vertex coloring of a graph G=(V,E) is acyclic if G contains no bicolored cycle. A graph G is acyclically L-list colorable if for a given list assignment L={L(v):vV}, there exists a proper acyclic coloring ? of G such that ?(v)∈L(v) for all vV(G). If G is acyclically L-list colorable for any list assignment with |L(v)|≥k for all vV, then G is acyclically k-choosable. In this paper it is proved that every planar graph with neither 4-cycles nor chordal 6-cycles is acyclically 5-choosable. This generalizes the results of [M. Montassier, A. Raspaud, W. Wang, Acyclic 5-choosability of planar graphs without small cycles, J. Graph Theory 54 (2007) 245-260], and a corollary of [M. Montassier, P. Ochem, A. Raspaud, On the acyclic choosability of graphs, J. Graph Theory 51 (4) (2006) 281-300].  相似文献   

15.
Let G be a planar graph with maximum degree Δ. It is proved that if Δ ≥ 8 and G is free of k-cycles for some k ∈ {5,6}, then the total chromatic number χ′′(G) of G is Δ + 1. This work is supported by a research grant NSFC(60673047) and SRFDP(20040422004) of China. Received: February 27, 2007. Final version received: December 12, 2007.  相似文献   

16.
The closed neighborhood NG[e] of an edge e in a graph G is the set consisting of e and of all edges having an end-vertex in common with e. Let f be a function on E(G), the edge set of G, into the set {−1, 1}. If for each eE(G), then f is called a signed edge dominating function of G. The signed edge domination number γs(G) of G is defined as . Recently, Xu proved that γs(G) ≥ |V(G)| − |E(G)| for all graphs G without isolated vertices. In this paper we first characterize all simple connected graphs G for which γs(G) = |V(G)| − |E(G)|. This answers Problem 4.2 of [4]. Then we classify all simple connected graphs G with precisely k cycles and γs(G) = 1 − k, 2 − k. A. Khodkar: Research supported by a Faculty Research Grant, University of West Georgia. Send offprint requests to: Abdollah Khodkar.  相似文献   

17.
A graph G is said to be 3-domination critical if its domination number γ(G) = 3 and γ(G + e) = 2 for any edge e not contained in G. In this paper we first establish some structural properties of 3-domination critical graphs with diameter equal to 3. In particular, this allows us to characterize a special family of 3-domination critical graphs which contains those with minimum degree one. Moreover, we show that if the minimum degree of a 3-domination critical graph G is at least 3, then α(G) ≤ κ(G) + 1 or G is superconnected, where α(G) is the independence number and κ(G) is the vertex-connectivity of G.  相似文献   

18.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and it is denoted by a(G). From a result of Burnstein it follows that all subcubic graphs are acyclically edge colorable using five colors. This result is tight since there are 3-regular graphs which require five colors. In this paper we prove that any non-regular connected graph of maximum degree 3 is acyclically edge colorable using at most four colors. This result is tight since all edge maximal non-regular connected graphs of maximum degree 3 require four colors.  相似文献   

19.
A set S of vertices of a graph G = (V, E) without isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination number γ t (G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number sdγt (G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. Karami, Khoeilar, Sheikholeslami and Khodkar, (Graphs and Combinatorics, 2009, 25, 727–733) proved that for any connected graph G of order n ≥ 3, sdγ t (G) ≤ 2γ t (G) − 1 and posed the following problem: Characterize the graphs that achieve the aforementioned upper bound. In this paper we first prove that sdγ t (G) ≤ 2α′(G) for every connected graph G of order n ≥ 3 and δ(G) ≥ 2 where α′(G) is the maximum number of edges in a matching in G and then we characterize all connected graphs G with sdγ t (G)=2γ t (G)−1.  相似文献   

20.
A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic chromatic index of G, denoted by χ’a(G), is the least number of colors such that G has an acyclic edge k-coloring. Let G be a graph with maximum degree Δ and girth g(G), and let 1≤r≤2Δ be an integer. In this paper, it is shown that there exists a constant c > 0 such that if g(G)≥cΔ r log(Δ2/r) then χa(G)≤Δ + r + 1, which generalizes the result of Alon et al. in 2001. When G is restricted to series-parallel graphs, it is proved that χ’a(G) = Δ if Δ≥4 and g(G)≥4; or Δ≥3 and g(G)≥5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号