首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel optically active 2-(pyrazol-1-yl)pyridines have been prepared using resolved the O-methyl ether of atrolactic acid as a source of the adjacent quaternary carbon stereocenter. Different regioisomers were formed selectively in the reaction of 2-hydrazinopyridines with the chiral 1,3-diketone and in the nucleophilic substitution of 2-chloropyridines with the potassium salt of the chiral pyrazole. The second route gave 2-(pyrazol-1-yl)pyridines with the stereogenic center neighboring the coordinating nitrogen in the pyrazole ring. Also, new C2-symmetric chiral ligands based on 2,6-bis(pyrazolyl)pyridine and 6,6′-bis(pirazolyl)-2,2′-bipyridine structures were obtained.  相似文献   

2.
Two routes to 2,6-di(pyrazol-1-yl)-4-hydroxymethylpyridine (1) from 2,6-dihydroxy-isonicotinic acid, in four and six steps, are reported. Reaction of 1 with 48% HBr yields 2,6-di(pyrazol-1-yl)-4-bromomethylpyridine (2), which is a powerful precursor to a range of new tridentate ligands for transition metals functionalised at the pyridine ring. As a proof of principle, we describe the further elaboration of 2 to give two 2,6-di(pyrazol-1-yl)pyridines bearing nucleobase substituents, and the back-to-back ligand 1,2-bis[2,6-di(pyrazol-1-yl)pyrid-4-yl]ethane. Crystal structures of two of these new derivatives are presented.  相似文献   

3.
It has been established that 1, 2, 4, 5-tetrafluoro-3, 6-bis (vinylsulfinyl)- and 1, 2, 4, 5-tetrafluoro-3, 6bis(vinylsulfonyl)benzenes react with 2-aminoethanol by nucleophilic addition at the activated double bond with replacement of fluorine atoms on the benzene ring by the amino group of 2-aminoethanol to give 4, 9-bis(2 hydroxyethyl)-5,10-difluoro-1, 2, 3, 4, 6, 7, 8, 9-octahydrobenzo[1, 2-b; 5, 4-b]di-1, 4-thiazine 1,6-dioxide and 1, 1, 6, 6-tetraoxide respectively.Irkutsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences (SO RAN), Irkutsk 664033. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1195–1198, September, 1996. Original article submitted June 5, 1996.Deceased  相似文献   

4.
Ruthenium(II) and palladium(II) complexes [Ru(DMSO)(L)Cl2] and [Pd(L)Cl]Cl, where L = 2,6-bis(pyrazol-1-yl)pyridine (bpp) or 2,6-bis(3,5-dimethylpyrazol-1-yl)pyridine (bdmpp) have been synthesized. All complexes were characterized by elemental analysis, IR, 1H NMR, UV-Vis, and cyclic voltammetry measurements.  相似文献   

5.
Four highly soluble square-planar Cu(II) and Ni(II) complexes of siloxy-salens (2SiCu, 2SiNi) and hydroxy-salens (2Cu, 2Ni) have been synthesized. An X-ray crystal structure analysis was performed on 2SiCu, 2SiNi, and 2Ni. The compounds have been investigated by cyclic voltammetry, UV-vis-NIR spectroelectrochemistry, and EPR spectroscopy. According to these results, the monooxidized species [2SiCu]+ and [2SiNi]+ are to be classified as Robin-Day class II and III systems, respectively. Magnetic measurements on the dinuclear (PMDTA)Cu(II) complex 1Cu2 x (PF6)2 with deprotonated 1,4-dihydroxy-2,5-bis(pyrazol-1-yl)-benzene (1) linker revealed antiferromagnetic coupling between the two Cu(II) ions thereby resulting in an isolated dimer compound. Coordination polymers [1Cu]n(H2O)(2n) of Cu(II) ions and bridging p-hydroquinone linkers were obtained from CuSO4 x 5 H2O and 1,4-dihydroxy-2,5-bis(pyrazol-1-yl)benzene. X-ray crystallography revealed linear chains running along the crystallographic a-direction and stacked along the b-axis. Within these chains, the Cu(II) ions are coordinated by two pyrazolyl nitrogen atoms and two p-hydroquinone oxygen atoms in a square-planar fashion.  相似文献   

6.
The tripodal N,N,O ligands 3,3-bis(3,5-dimethylpyrazol-1-yl)propionic acid (Hbdmpzp) (1) and 3,3-bis(pyrazol-1-yl)propionic acid (Hbpzp) (2) form the “missing link” between the well-known bis(pyrazol-1-yl)acetic acids and related ligands with a longer “carboxylate arm”. To illustrate the reactivity of this ligand, manganese and rhenium complexes bearing the ligand bdmpzp are reported. The complexes are compared to related compounds bearing other tripod ligands such as bis(3,5-dimethylpyrazol-1-yl)acetate (bdmpza) and 3,3-bis(1-methylimidazol-2-yl)propionate (bmip). Spectroscopic and structural data are used as a basis for comparison, as well as DFT calculations. Both ligands 1 and 2 and the complexes fac-[Mn(bdmpzp)(CO)3] (3) and fac-[Re(bdmpzp)(CO)3] (4) were characterised by X-ray crystallography.  相似文献   

7.
A new dimeric copper(II) bromide complex, [Cu(LOHex)Br(μ-Br)]2 (1), was prepared by a reaction of CuBr2 with the hexyl bis(pyrazol-1-yl)acetate ligand (LOHex) in acetonitrile solution and fully characterized in the solid state and in solution. The crystal structure of 1 was also determined: the complex is interlinked by two bridging bromide ligands and possesses terminal bromide ligands on each copper atom. The two pyrazolyl ligands in 1 coordinate with the nitrogen atoms to complete the Cu coordination sphere, resulting in a five-coordinated geometry—away from idealized trigonal bipyramidal and square pyramidal geometries—which can better be described as distorted square pyramidal, as measured by the τ and χ structural parameters. The pendant hexyloxy chain is disordered over two arrangements, with final site occupancies refined to 0.705 and 0.295. The newly synthesized complex was evaluated as a catalyst in copper-catalyzed C–H oxidation for allylic functionalization through a Kharasch–Sosnovsky reaction without any external reducing agent. Using 0.5 mol% of this catalyst, and tert-butyl peroxybenzoate (Luperox) as an oxidant, allylic benzoates were obtained with up to 90% yield. The general reaction time was only slightly decreased to 24 h but a very significant decrease in the alkene:Luperox ratio to 3:1 was achieved. These factors show relevant improvements with respect to classical Kharasch–Sosnovsky reactions in terms of rate and amount of reagents. The present study highlights the potential of copper(II) complexes containing functionalized bis(pyrazol-1-yl)acetate ligands as efficient catalysts for allylic oxidations.  相似文献   

8.
Reactions of 2-hydroxyphenyl and 2-methoxyphenylbis(pyrazol-1-yl)methanes as well as 2-hydroxyphenyl and 2-methoxyphenylbis(3,5-dimethylpyrazol-1-yl)methanes with W(CO)5THF have been carried out. Heating 2-hydroxyphenylbis(pyrazol-1-yl)methane (L1) with W(CO)5THF in THF at reflux yielded complex (L1)W(CO)4.L1, while similar reaction of 2-hydroxyphenylbis(3,5-dimethylpyrazol-1-yl)methane (L2) with W(CO)5THF resulted in the cleavage of a Csp3-N bond to generate 1,2-bis(2-hydroxyphenyl)-1,2-bis(3,5-dimethylpyrazol-1-yl)ethane (L) and pyrazole derivative W(CO)5(3,5-Me2PzH) (Pz = pyrazol-1-yl). These two fragments were connected together through strong O…H-N and O-H…N hydrogen bonds to form complex L.[W(CO)5(3,5-Me2PzH)]2. The analogous results were observed in the treatment of 2-methoxyphenylbis(pyrazol-1-yl)methane (L3) with W(CO)5THF, which gave product L′.[W(CO)5(PzH)]2 (L′ = 1,2-bis(2-methoxyphenyl)-1,2-bis(pyrazol-1-yl)ethane) as well as certain amount of complex (L3)W(CO)4. In addition, during the reaction of 2-methoxyphenylbis(3,5-dimethylpyrazol-1-yl)methane (L4) with W(CO)5THF, partial decomposition reactions took place to yield complexes (L4)W(CO)4 and W(CO)5(3,5-Me2PzH), but no hydrogen bond was found between these two moieties.  相似文献   

9.
Novel palladium(II) complexes with bis(pyrazol-1-yl)methane ligands at the focal point of G0-G3 poly(aryl ether) Fréchet-type dendrons are reported. The molecular structures of the metallodendrimer series G0, G1, and G2 [(dend)CH(3,5-Me2pz)2(PdCl2)] have been determined by X-ray diffraction methods. The three structures show a similar three-dimensional organization of the metal complex, which is progressively engulfed by the branches with increasing dendrimer generation.  相似文献   

10.
Ethyl 5,6,7,8-tetrafluoro-4-oxo-2-phenyl-4H-chromene-3-carboxylate in reactions with primary amines is characterized by a chromone-coumarin rearrangement affording 3-[amino(phenyl)methylene]-6,7,8-trifluoro-2H-chromene-2,4(3H)-diones, and ethyl 4-oxo-2-phenyl-5,6,7,8-tetrafluoro-4H-chromene-3-carboxylate characteristically adds the amine at the C2 site of the flavone furnishing 3-amino-3-phenyl-2-(2,3,4,5-tetrafluoro-6-hydroxybenzoyl)acrylates which depending on the substituent at the amino group are capable of intramolecular cyclization into 3-[(alkylamino)(phenyl)methylene]-5,6,7,8-tetrafluoro-2H-chromene-2,4(3H)-dione or in the case of benzylamine substituent, into ethyl 1-benzyl-5-hydroxy-4-oxo-2-phenyl-6,7,8-trifluoro-1,4-dihydroquinoline-3-carboxylate. The main process in the reaction of tri- and tetrafluoroflavones with secondary amine (1-methylpiperazine) is the nucleophilic substitution at the C7 of flavone. In the reaction with 1,2-phenylenediamine 3-[(2-aminophenyl)amino]-3-phenyl-2-(2,3,4,5-tetrafluoro-6-hydroxybenzoyl)acrylate was obtained from tetrafluoroflavone and 1H-benzimidazol-2-yl(3,4,5-trifluoro-2-hydroxyphenyl)methanone, from trifluoroflavone.  相似文献   

11.
The reaction of octafluorotoluene in DMF with vinylthiolate ion generated from divinyl sulfide by the action of sodium in liquid ammonia afforded 2,3,5,6-tetrafluoro-4-trifluoromethylaniline, 3,6-difluoro-4-trifluoromethyl-1,2,5-tris(vinylsulfanyl)benzene, and 3,6-difluoro-N, N-dimethyl-4-trifluoromethyl-2,5-bis-(vinylsulfanyl)aniline. Under the same conditions, 2,3,5,6-tetrafluoro-4-trifluoromethylaniline gave rise to 3,6-difluoro-4-trifluoromethyl-2,5-bis(vinylsulfanyl)aniline.__________Translated from Zhurnal Organicheskoi Khimii, Vol. 41, No. 3, 2005, pp. 411–414.Original Russian Text Copyright © 2005 by Amosova, Gavrilova, Afonin.  相似文献   

12.
Ohi H  Tachi Y  Itoh S 《Inorganic chemistry》2006,45(26):10825-10835
The structure and O2-reactivity of copper(I) complexes supported by novel ligands, Pye2 (1,3,5-triethyl-2,4-bis((N-benzyl-N-(2-(pyridin-2-yl)ethyl)-)aminomethyl)benzene), Pye3 (1,3,5-triethyl-2,4,6-tris((N-benzyl-N-(2-(pyridin-2-yl)ethyl))aminomethyl)benzene), MePym2 (1,3,5-triethyl-2,4-bis((N-benzyl-N-(6-methylpyridin-2-ylmethyl))aminomethyl)benzene), and MePym3 (1,3,5-triethyl-2,4,6-tris((N-benzyl-N-(6-methylpyridin-2-ylmethyl))aminomethyl)benzene) have been examined. The ligands are designed to construct mono-, di-, and trinuclear copper(I) complexes by connecting two or three pyridylalkylamine metal-binding sites to a 1,3,5-triethylbenzene spacer. Thus, the reaction of the ligands with [CuI(CH3CN)4]X (X = PF6, CF3SO3) or CuICl gave the expected mononuclear copper(I) complexes [CuI(Pye2)(CF3SO3)] (1) and [CuI(Pye3)](CF3SO3) (2), dinuclear copper(I) complex [CuI2(MePym2)(Cl)]CuICl2 (3), and trinuclear copper(I) complex [CuI3(MePym3)(CH3CN)3](CF3SO3)3 (4), the structures of which were determined by X-ray crystallographic analysis. The mononuclear copper(I) complexes, 1 and 2, exhibit a distorted three-coordinate T-shape structure and a trigonal planar structure, respectively, which are very close to the coordination geometry of the CuA site of PHM (peptidylglycine alpha-hydroxylating monooxygenase) and the CuB site of CcO (cytochrome c oxidase). Notably, 1 and 2 showed a significantly high oxidation potential (990 mV vs SCE), thus showing virtually no reactivity toward O2. On the other hand, the metal centers of the dinuclear and trinuclear copper(I) complexes, 3 and 4, exhibit a distorted trigonal planar geometry and a trigonal pyramidal geometry, respectively. In contrast to the mononuclear copper(I) complexes, these dinuclear and trinuclear copper(I) complexes reacted with O2 to induce an aromatic ligand hydroxylation reaction involving an NIH-shift of one of the ethyl substituents on the benzene spacer. The NIH-shift of the alkyl substituent on the aromatic ring is strong evidence of the electrophilic aromatic substitution mechanism, although the active oxygen intermediate could not be directly detected during the course of the reaction. The biological relevance of the copper(I) complexes is also discussed on the basis of structure and O2-reactivity.  相似文献   

13.
Chiral magnetic materials are proposed for applications in second-order non-linear optics, magneto-chiral dichroism, among others. Recently, we have reported a set of tetra-nuclear Fe(II) grid complex conformers with general formula C/S-[Fe4L4]8+ (L: 2,6-bis(6-(pyrazol-1-yl)pyridin-2-yl)-1,5-dihydrobenzo[1,2-d : 4,5-d′]diimidazole). In the grid complexes, isomerism emerges from tautomerism and conformational isomerism of the ligand L, and the S-type grid complex is chiral, which originates from different non-centrosymmetric spatial organization of the trans type ligand around the Fe(II) center. However, the selective preparation of an enantiomerically pure grid complex in a controlled manner is difficult due to spontaneous self-assembly. To achieve the pre-synthesis programmable resolution of Fe(II) grid complexes, we designed and synthesized two novel intrinsically chiral ligands by appending chiral moieties to the parent ligand. The complexation of these chiral ligands with Fe(II) salt resulted in the formation of enantiomerically pure Fe(II) grid complexes, as unambiguously elucidated by CD and XRD studies. The enantiomeric complexes exhibited similar gradual and half-complete thermal and photo-induced SCO characteristics. The good agreement between the experimentally obtained and calculated CD spectra further supports the enantiomeric purity of the complexes and even the magnetic studies. The chiral resolution of Fe(II)- [2×2] grid complexes reported in this study, for the first time, might enable the fabrication of magneto-chiral molecular devices.  相似文献   

14.
The reactions of 1,2-bis(tetrazol-5-yl)benzene (1), 1,3-bis(tetrazol-5-yl)benzene (2), 1,4-bis(tetrazol-5-yl)benzene (3), 1,2-(Bu3SnN4C)2C6H4 (4), 1,3-(Bu3SnN4C)2C6H4 (5) and 1,4-(Bu3SnN4C)2C6H4 (6) with 1,2-dibromoethane were carried out by two different methods in order to synthesise pendant alkyl halide derivatives of the parent bis-tetrazoles. This lead to the formation of several alkyl halide derivatives, substituted at either N1 or N2 on the tetrazole ring, as well as the surprising formation of several vinyl derivatives. The crystal structures of both 1,2-[(2-vinyl)tetrazol-5-yl)]benzene (1-N,2-N′) (1b) and 1,3-bis[(2-bromoethyl)tetrazol-5-yl]benzene (2-N,2-N′) (5d) are discussed.  相似文献   

15.
An efficient protocol for the synthesis of 5-aryl-6-(trifluoromethyl)-2,3-dihydropyrazolo[1,2-a]pyrazol-1(5H)-one derivatives through a copper-catalyzed [3+2]-cycloaddition of azomethine imines with 3,3,3-trifluoropropyne (generated in situ from dehydrobromination of 2-bromo-3,3,3-trifluoropropene under base conditions) is developed. The advantages of this transformation are the broad substrate scope and the good functional group compatibility. The subsequent oxidation and nucleophilic substitution/aromatization provide a new approach to 4-trifluoromethylated pyrazol-1-yl propanoic acids.  相似文献   

16.
Bosch E  Barnes CL 《Inorganic chemistry》2001,40(13):3097-3100
The design, synthesis, and complexation characteristics of the bipyridyl ligand 1,2-bis-(2-pyridylethynyl)benzene are described. The X-ray crystallographic characterization of the 1:1 complexes of 1,2-bis(2-pyridylethynyl)benzene with silver(I) triflate and palladium(II) chloride are described. In the X-ray crystal structure of the silver(I) triflate complex the ligand is essentially planar with negligible distortion compatible with a good fit of the cation in the "cavity" between the pyridine N atoms. Indeed the silver center is almost linear with the N(1)-Ag(1)-N(2) angle of 177.02(10) degrees. The ligand is also essentially planar in the palladium(II) chloride complex with square planar coordination about the palladium with the N(1)-Pd(1)-N(2), Cl(2)-Pd(1)-Cl(2), and N(1)-Pd(1)-Cl(2) angles at 179.53(7), 177.17(2), and 90.52(5) degrees, respectively.  相似文献   

17.
A new copper(II) complex based on the rigid ligand OBimB (OBimB = 1,2-bis(2-benzimidazolyl)benzene) has been synthesized and structurally characterized by X-ray single-crystal diffraction. In the structure of the complex, each Cu(II) atom is coordinated by four N atoms from two twisted V-shaped OBimB ligands in a square-planar geometry. The complex has been used as a bulk modifier to fabricate a carbon paste electrode (Cu-CPE). Electrochemical studies of the Cu-CPE in 0.1 M pH 2.0 phosphate buffer solution reveal that the Cu2+/Cu+ redox process is quasi-reversible. Electrocatalytic studies of the Cu-CPE indicate that it has good electrocatalytic activities toward reduction of bromate, hydrogen peroxide, and nitrite.  相似文献   

18.
Two new unsymmetric derivatives of 1,2-bis-(5-phenyloxazol-2-yl)benzene (ortho-POPOP) were synthesized via microwave-assisted nucleophilic substitution of fluorine which appears to be significantly more efficient compared with conventional thermal activation. The compounds synthesized are characterized by high fluorescence Stokes shifts (6000-11,000 cm−1) in solvents of various polarity, intermediate-to-high fluorescence quantum yields and lifetimes in the range of several nanoseconds.  相似文献   

19.
As exemplified for the first time by pyrazole and its 4-nitro and 3,5-dimethyl derivatives, N-arylation of pyrazoles can be performed under conditions of undivided-cell amperostatic electrolysis (Pt electrodes, MeCN) of systems containing the pyrazolate anion and (or) pyrazole, arene (benzene, 1,4-dimethoxybenzene, or xylene), and a supporting electrolyte. In the case of electrolysis involving 1,4-dimethoxybenzene as arene, N-arylation followed simultaneously three routes to form an ortho-substitution product (1,4-dimethoxy-2-(pyrazol-1-yl)benzene), an ipso-substitution product (4-methoxy-1-(pyrazol-1-yl)benzene), and an ipso-bisaddition product (1,4-dimethoxy-1,4-di(pyrazol-1-yl)cyclohexa-2,5-diene) in a total current yield of up to 50%. The acid-base properties of the pyrazoles under study affect the ratio of the N-arylation products and govern the required composition of the starting reaction mixture. In the case of a stronger base, such as 3,5-dimethylpyrazole, N-arylation with 1,4-dimethoxybenzene occurred even in the pyrazole—arene—tetraalkylammonium perchlorate system, whereas N-arylation of 4-nitropyrazole (a weaker base) proceeded only in the presence of the pyrazolate anion or another base, viz., sym-collidine. Oxidation of arene to the radical cation is the key anodic reaction. Not only the pyrazolate anion, but also highly basic pyrazole or a solvate complex of weakly basic pyrazole with collidine can serve as a nucleophilic partner in subsequent transformations of these radical cations.  相似文献   

20.
Fluorescence quenching of 1,4-bis(1H-pyrrol-1-yl)benzene, 1-(1H-pyrrol-2-yl)-1-(1-vinyl-1H-pyrrol-1-yl)benzene, and 1,4-bis(1-vinyl-1H-pyrrol-2-yl)benzene with chloromethanes (methylene chloride, chloroform, and carbon tetrachloride) in solvents with different polarities follows electron-transfer mechanism. The occurrence of an electron-transfer step is confirmed by formation of short-lived pyrrolylbenzene radical cations. An exception is quenching of fluorescence of 1,4-bis(1-vinyl-1H-pyrrol-2-yl)benzene in n-hexane in the presence of CCl4 and CHCl3 and in pure CCl4. In this case, neutral 1,4-bis(1-vinyl-1H-pyrrol-2-yl)benzene·-Cl radical is formed via recombination of 1,4-bis(1-vinyl-1H-pyrrol-2-yl)benzene radical cation and chloride anion. A relation was found between the nature of the short-lived species detected by laser photolysis and stable product obtained by stationary photolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号