首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过双吡唑甲基锂(LiCHPz2)与有机锡卤化物(R3SnX)的反应合成了一系列有机锡修饰的双吡唑甲烷配体(R3SnCHPz2).由于锡上取代基的不同,这些配体与W(CO)5THF反应时表现出了不同的反应方式.三芳基锡修饰的双吡唑甲烷与W(CO)5THF反应发生Sn-C(sp3)键对W(0)中心的氧化加成;而三苄基锡修饰的双吡唑甲烷与其反应时仅给出羰基取代产物[Bz3SnCHPz2W(CO)4].另外,二苯基苄基锡以及三(2-苯基-2-甲基丙基)锡修饰的双吡唑甲烷配体类似的反应导致配体的分解,产生单吡唑配体取代的羰基钨衍生物[W(CO)5PzH]以及脱有机锡的双吡唑甲烷四羰基钨衍生物[CH2Pz2W(CO)4].  相似文献   

2.
The synthesis, structural characterization, and coordination behavior of ditopic ortho-hydroquinone-based bis(pyrazol-1-yl)methane ligands (ortho-(OH)2C6H3-4-CHpz2, ortho-(OH)2C6H3-4-CH(3-Phpz)2, and ortho-(OH)2C6H3-4-CH(3-tBupz)2) with pyrazole, 3-phenylpyrazole, and 3-tert-butylpyrazole as donors are described. The reaction of a soluble PdCl2-source with ortho-(OH)2C6H3-4-CHpz2 in acetonitrile yielded the related square-planar N,N-coordinated Pd(II) dichloride complex, whereas treatment of ortho-(OH)2C6H3-4-CH(3-Phpz)2 or ortho-(OH)2C6H3-4-CH(3-tBupz)2 with PdCl2 in acetonitrile resulted in degradation of these ligands. The Pd(II) complexes trans-(3-PhpzH)2PdCl2 and trans-(3-tBupzH)2PdCl2 were isolated and fully characterized including X-ray diffraction analyses.  相似文献   

3.
The steric misfit between a geminal bis(pyrazol-1-yl)propane ligand and tetrahedral coordination leads to distortion of the latter in the title compound: N? Zn? N is 89.5(1)°, Cl? Zn? Cl 116.78(5)°. Comparison of the Zn? N (2.058(3), 2.046(3) Å) and Zn? Cl (2.209(1), 2.229(1) Å) distances with those of related compounds evidences the steric bulkiness of the title ligand.  相似文献   

4.
Two novel copper(II) complexes incorporating bis(pyrazol-1-yl)methane ligand (bpzm) have been synthesized. The compounds [CuCl(bpzm)2(H2O)]Cl·H2O (1) and [Cu(N3)2(bpzm)]n (2) have been studied by IR, UV-Vis spectroscopy and X-ray crystallography. The experimental studies on the compounds 1 and 2 have been accompanied computationally by the density functional theory (DFT) calculations.  相似文献   

5.
研究了(氮甲基咪唑-2-基)双(3,5-二甲基吡唑)甲烷(L1),2-吡啶基双(3,5-二甲基吡唑)甲烷(L2)及4-吡啶基双(3,5-二甲基吡唑)甲烷(L3)与羰基钨的反应,合成了一系列以单齿,双齿及三齿氮配位的羰基金属衍生物LW(CO)5(L=L1或L3),LW(CO)4(L=L1,L2或L3)和LW(CO)3(L=L1或L2)。核磁,红外及X-射线单晶衍射分析表明这3种配体表现出了可变的配位方式。在LW(CO)5中,当配体为L1时,其倾向于通过咪唑氮与金属配位,而为L3则倾向于利用吡啶氮与金属作用;在LW(CO)4中,配体L1表现为通过咪唑氮和吡唑氮原子配位的[N,N′]双齿配体,而L2和L3表现为通过吡唑氮原子配位的[N,N]双齿配体;在LW(CO)3中,L1和L2起着[N,N,N′]三齿螯合配体的作用。  相似文献   

6.
The reaction of bis(pyrazol-1-yl)methane tetracarbonylmolybdenum(0) or tungsten(0) complexes with RSnCl3 (R=Ph, Cl) at room temperature yielded heterobimetallic complexes CH2(Pz)2M(CO)3(Cl)(SnCl2R) (Pz represents substituted pyrazole; M=Mo or W; R=Ph or Cl) in good yields, which have been characterized by elemental analysis, 1H NMR and IR spectroscopy. The reaction of bis(3,5-dimethyl-4-halopyrazol-1-yl)methane tetracarbonyl tungsten with PhSnCl3 did not take place even in refluxing CH2Cl2. The electronic and steric characteristics of substituents on the pyrazole ring remarkably influence the structures of the products. The structures of CH2(3,5-Me2-4-BrPz)2W(CO)3(Cl)(SnCl3) (8) and CH2(4-BrPz)2Mo(CO)3(μ-Cl)(SnCl2Ph) (17) (Pz: pyrazole) determined by X-ray crystallography show that no chlorine-bridged W---Sn bond is observed in complex 8, while one chlorine-bridged Mo---Sn bond exists in complex 17. The Sn---M bond length is 2.7438(5) Å in complex 8 (W---Sn) and 2.7559(4) Å in complex 17 (Mo---Sn).  相似文献   

7.
New multidentate heteroscorpionate ligands, N-phenyl-2,2-bis(3,5-dimethylpyrazol-1-yl)thioacetamide PhHNCSCH(3,5-Me2Pz)2 (1), N-phenyl-2,2-bis(3,4,5-trimethylpyrazol-1-yl)thioacetamide PhHNCSCH(3,4,5-Me3Pz)2 (2), and ethyl 2,2-bis(3,5-dimethylpyrazol-1-yl)dithioacetate EtSCSCH(3,5-Me2Pz)2 (8), have been synthesized and their coordination chemistry studied. These heteroscorpionate ligands can act as monodentate, bidentate, or tridentate ligands, depending on the coordinate properties of different metals. Reaction of W(CO)6 with 1 or 2 under UV irradiation yields monosubstituted carbonyl tungsten complexes W(CO)5L (L = 1 or 2), in which N-phenyl-2,2-bis(pyrazol-1-yl)thioacetamide acts as a monodentate ligand by the s-coordination to the tungsten atom. In addition, these monosubstituted tungsten complexes have also been obtained by heating ligand 1 or 2 with W(CO)5THF in THF. While similar reaction of Fe(CO)5 with 1, 2, or 8 under UV irradiation results in tricarbonyl iron complexes PhHNCSCH(3,5-Me2Pz)2Fe(CO)3 (5), PhHNCSCH(3,4,5-Me3Pz)2Fe(CO)3 (6), and EtSCSCH(3,5-Me2Pz)2Fe(CO)3 (9), respectively, in which N-phenyl-2,2-bis(pyrazol-1-yl)thioacetamide or ethyl 2,2-bis(pyrazol-1-yl)dithioacetate acts as a bidentate ligand through one pyrazolyl nitrogen atom and the CS π-bond in an η2-C,S fashion side-on bonded to the iron atom to adopt a neutral bidentate κ2-(π,N) coordination mode. Treatment of the lithium salt of 1 with Co(ClO4)2 · 6H2O gives complex [PhNCSCH(3,5-Me2Pz)2]2Co(ClO4) with the oxidation of cobalt(II) to cobalt(III), in which N-phenyl-2,2-bis(3,5-dimethylpyrazol-1-yl)thioacetamide acts as a tridentate monoanionic κ3-(N,N,S) chelating ligand by two pyrazolyl nitrogen atoms and the sulfur atom of the enolized thiolate anion.  相似文献   

8.
研究了(氮甲基咪唑-2-基)双(3,5-二甲基吡唑)甲烷(L1),2-吡啶基双(3,5-二甲基吡唑)甲烷(L2)及4-吡啶基双(3,5-二甲基吡唑)甲烷(L3)与羰基钨的反应,合成了一系列以单齿,双齿及三齿氮配位的羰基金属衍生物LW(CO)5 (L=L1或L3),LW(CO)4 (L=L1,L2或L3)和LW(CO)3 (L=L1或L2).核磁,红外及X-射线单晶衍射分析表明这3种配体表现出了可变的配位方式.在LW(CO)5中,当配体为L1时,其倾向于通过咪唑氮与金属配位,而为L3则倾向于利用吡啶氮与金属作用;在LW(CO)4中,配体L1表现为通过咪唑氮和吡唑氮原子配位的[N,N']双齿配体,而L2和L3表现为通过吡唑氮原子配位的[N,N]双齿配体;在LW(CO)3中,L1和L2起着[N,N,N']三齿螯合配体的作用.  相似文献   

9.
The conformation of the TPT molecule has been analyzed using experimental and computational techniques. The solid-state molecular structure shows similar conformational features to those in the 2-pyrimidine and phenyl derivatives although a different pattern of bond angles in the triazine ring was observed. The AM1 calculations predicted two conformations of comparable stability (E=1.8 kcal/mol) differing in the orientation of one pyrazole ring. While the minimum energy conformation corresponds to a model displayingC 3h symmetry ( 1= 2= 3=0°), the other minimum ( 1= 2=0°, 3=180°) is close to that observed in the solid state. The electron diffraction results are consistent with a planar or nearly planar conformation in agreement with the preceding studies.On leave from the Depto. Química. Universidade Federal Rural do Rio de Janeiro. Itaguai (RJ) 23851 Brazil.  相似文献   

10.
The modification of bis(pyrazol-1-yl)methanes by organotin halide on the methine carbon atom has been successfully carried out, and their related reactions have also been studied. Bis(3,5-dimethylpyrazol-1-yl)(iododiphenylstannyl)methane [Ph2ISnCH(3,5-Me2Pz)2] can be obtained by the selective cleavage of the Sn-Csp2 bond in bis(3,5-dimethylpyrazol-1-yl)triphenylstannylmethane with I2 in a 1:1 molar ratio, while {di(tert-butyl)chlorostannyl}bis(3,5-dimethylpyrazol-1-yl)methane [(t-Bu)2ClSnCH(3,5-Me2Pz)2] and {di(tert-butyl)chlorostannyl}bis(3,4,5-trimethylpyrazol-1-yl)methane [(t-Bu)2ClSnCH(3,4,5-Me3Pz)2] are easily prepared by the reaction of the bis(3,5-dimethylpyrazol-1-yl)methide or bis(3,4,5-trimethylpyrazol-1-yl)methide anion with di(tert-butyl)tin dichloride. The molecular structure of [(t-Bu)2ClSnCH(3,5-Me2Pz)2] determined by X-ray structure analysis indicates that bis(3,5-dimethylpyrazol-1-yl)methide acts as a bidentate monoanionic κ2-[C,N] chelating ligand. Reaction of these bis(pyrazol-1-yl)methanes functionalized by organotin halide with W(CO)5THF results in the oxidative addition of the relative electrophilic Sn-X (X = Cl or I) bond instead of the Sn-Csp3 bond to the tungsten(0) atom, yielding new metal-metal bonded complexes R2SnCHPz2W(CO)3X (R = Ph or t-Bu, Pz represents substituted pyrazol-1-yl). Furthermore, treatment of the oxidative addition product (t-Bu)2SnCH(3,5-Me2Pz)2W(CO)3Cl with n-BuLi results in known complex CH2(3,5-Me2Pz)2W(CO)4 with the loss of the organotin fragment. In addition, reaction of Ph2ISnCH(3,5-Me2Pz)2 with 2-PySNa (Py = pyridyl) leads to the replacement of iodide by 2-PyS anion to give Ph2(2-PyS)SnCH(3,5-Me2Pz)2, which subsequently reacts with W(CO)5THF to result in the decomposition of this ligand, also yielding the known bis(3,5-dimethylpyrazol-1-yl)methane derivative of CH2(3,5-Me2Pz)2W(CO)4.  相似文献   

11.
The reaction of 3(5)-methylthio-5(3)-phenylpyrazole with dibromomethane under phase-transfer catalytic conditions only affords a new ligand, bis(3-phenyl-5-methylthiopyrazol-1-yl)methane. However, the reaction of 3(5)-methylthio-5(3)-p-methoxyphenylpyrazole or 3(5)-methylthio-5(3)-tert-butylpyrazole with dibromomethane under the same conditions yields three isomers, respectively, indicating that the substituents significantly affect the steric and electronic properties of pyrazole ring during the formation of ligands. Treatment of these potential polydentate ligands with M(CO)6 (M=Cr, Mo or W) under UV irradiation at room temperature affords (NN)M(CO)4 derivatives, in which some complexes contain asymmetric substituted bis(pyrazol-1-yl)methane ligands. The X-ray crystal structure analyses indicate that the sulfur atoms in these complexes do not take part in the coordination to the metal centers, and S-rich bis(pyrazol-1-yl)methanes actually act as bidentate chelating ligands by two nitrogen atoms. It is also interesting that in order to reduce the repulsion of methyl groups with carbonyls, the methyl groups in these complexes are oriented away from the metal centers.  相似文献   

12.
Carboxylation of bis(pyrazol-1-yl)alkanes by oxalyl chloride was studied. It was found that 4,4′-dicarboxylic derivatives of substrates with electron-donating methyl groups and short linkers (from one to three methylene groups) can be prepared using this method. Longer linkers lead to significantly lower product yields, which is probably due to instability of the intermediate acid chlorides that are initially formed in the reaction with oxalyl chloride. Thus, bis(pyrazol-1-yl)methane gave only monocarboxylic derivative even with a large excess of oxalyl chloride and prolonged reaction duration. An alternative approach involves the reaction of ethyl 4-pyrazolecarboxylates with dibromoalkanes in a superbasic medium (potassium hydroxide–dimethyl sulfoxide) and is suitable for the preparation of bis(4-carboxypyrazol-1-yl)alkanes with both short and long linkers independent of substitution in positions 3 and 5 of pyrazole rings. The obtained dicarboxylic acids are interesting as potential building blocks for metal-organic frameworks.  相似文献   

13.
Pyrazoles were reacted with acylbromoacetylenes in solid Al2O3 at room temperature to afford 2,2-di(pyrazol-1-yl)enones in 22–69% yield. The reaction proceeds via isolable intermediates, (Z)-2-bromo-2-(pyrazol-1-yl)enones. This unexpected 2:1 coupling is in contrast to similar reactions of pyrroles, furans and thiophenes, which give the corresponding acylethynyl derivatives. This reaction opens a one-pot route to inaccessible gem-dipyrazolylenones, which have potential applications as bidentate chelating ligands and building blocks for drug design.  相似文献   

14.
The [ReCl3(MeCN)(PPh3)2] complex reacts with bis(pyrazol-1-yl)methane (bpzm) to give [ReCl3(bpzm)(PPh3)]. This compound has been studied by IR, UV–Vis spectroscopy, magnetic measurement and X-ray crystallography. The molecular orbital diagram of [ReCl3(bpzm)(PPh3)] has been calculated with the density functional theory (DFT) method. The spin-allowed triplet–triplet electronic transitions of [ReCl3(bpzm)(PPh3)] have been calculated with the time-dependent DFT method, and the UV–Vis spectrum of the title compound has been discussed on this basis. The magnetic behavior is characteristic of a mononuclear d4 low-spin octahedral Re(III) complex (3T1g ground state) and arises because of the large spin–orbit coupling (ζ = 2500 cm−1), which gives a diamagnetic ground state.  相似文献   

15.
Reactions of 2-hydroxyphenyl and 2-methoxyphenylbis(pyrazol-1-yl)methanes as well as 2-hydroxyphenyl and 2-methoxyphenylbis(3,5-dimethylpyrazol-1-yl)methanes with W(CO)5THF have been carried out. Heating 2-hydroxyphenylbis(pyrazol-1-yl)methane (L1) with W(CO)5THF in THF at reflux yielded complex (L1)W(CO)4.L1, while similar reaction of 2-hydroxyphenylbis(3,5-dimethylpyrazol-1-yl)methane (L2) with W(CO)5THF resulted in the cleavage of a Csp3-N bond to generate 1,2-bis(2-hydroxyphenyl)-1,2-bis(3,5-dimethylpyrazol-1-yl)ethane (L) and pyrazole derivative W(CO)5(3,5-Me2PzH) (Pz = pyrazol-1-yl). These two fragments were connected together through strong O…H-N and O-H…N hydrogen bonds to form complex L.[W(CO)5(3,5-Me2PzH)]2. The analogous results were observed in the treatment of 2-methoxyphenylbis(pyrazol-1-yl)methane (L3) with W(CO)5THF, which gave product L′.[W(CO)5(PzH)]2 (L′ = 1,2-bis(2-methoxyphenyl)-1,2-bis(pyrazol-1-yl)ethane) as well as certain amount of complex (L3)W(CO)4. In addition, during the reaction of 2-methoxyphenylbis(3,5-dimethylpyrazol-1-yl)methane (L4) with W(CO)5THF, partial decomposition reactions took place to yield complexes (L4)W(CO)4 and W(CO)5(3,5-Me2PzH), but no hydrogen bond was found between these two moieties.  相似文献   

16.
The reaction of [Cu(NCMe)4](BF4) with equimolar amounts of the tris(substituted-pyrazolyl)methane ligand HCPz3 or HC(3,5-Me2Pz)3 yields the respective salts [Cu(HCPz3)(NCMe)](BF4) (1a) or [Cu(HC(3,5-Me2Pz)3)(NCMe)](BF4) (1). The acetonitrile ligand of 1 can be replaced by prazine, 4,4′-dipyridine or 1,4-diisocyanobenzene to yield related mononuclear complexes [Cu(HC(3,5-Me2Pz)3)(pyrazine)](BF4) (2), [Cu(HC(3,5-Me2Pz)3)(4,4′-bipyridine)] (BF4) (3) or [Cu(HC(3,5-Me2Pz)3)(1,4- CNC6H4NC)](BF4) (7), respectively. A series of binuclear copper(I) complexes {[Cu(HC(3,5-Me2Pz)3)]2(μ -BL)}(BF4)2 (4, BL = pyrazine; 5, BL = 4,4′-dipyridine; 8, BL = 1,4-diisocyanobenzene) were prepared by treating equal molar ratio of 1 with related mononuclear complexes 2, 3 and 7. In addition, binuclear copper(I) complexes were also prepared from treatment of 2 equiv of 1 with the related bridge ligand. Both of 4 and 5 reformed mononuclear starting complex 1 in acetonitrile solution. However, the more robust complex 8 was stable in acetonitrile solutions. The structure of complexes 1a, 4, 5, and 7 were confirmed by X-ray crystallography. The redox properties of 4 and 8 were examined by cyclic voltammetry and exhibited two quasi-reversible waves suggesting that no significant structural reorganization occurs during the redox process on the electrochemical time scale.  相似文献   

17.
赵雪梅  唐良富  杨攀  王积涛 《中国化学》2003,21(11):1447-1450
IntroductionPoly(pyrazol 1 yl)alkanes,especiallybis(pyrazol 1 yl)alkanes ,havebeenoneofpopularpolydentatenitrogendonorligandssinceTrofimenko’sfirstreport1andJulia’slatermodification .2 Ithasbeenfoundthatthecoordinationbehavioroftheseligandscaneasilybeadjustedbychang ingtheelectronicandstericcharacteristicsofsubstituentsonthepyrazolering .Recentinvestigationshavealsoshownthatthecentralcarbonatomoftheseligandscanbemodifiedbythevariousfunctionalgroupstoformversatileheteroscorpionateligands ,wh…  相似文献   

18.
Summary Liquid phase oxygenation of 1-tetralin, ethylbenzene, cyclohexane and toluene is describe using four catalyst precursors such as: (CH2)n(PzR)PdCl2 (n=1,2; R=H, Me) at T=100°C, Pair= 5.4 atm, substrate/catalyst ratio=100 for 3 h,. It was observed that the type of alkyl bridge between the pyrazolyl ligands has an effect on the catalytic activity.  相似文献   

19.
The modification of bis(pyrazol-1-yl)methane by sulfur or selenium on the methine carbon has been successfully carried out by the reaction of the bis(pyrazol-1-yl)methide anion, prepared in situ by the reaction of bis(pyrazol-1-yl)methane with n-BuLi, with elemental sulfur or selenium. These bis(pyrazol-1-yl)methylthiolate or selenolate anions reacted with Ph2SnCl2 to form new organotin derivatives CH(3,5-Me2Pz)2ESnPh2Cl (Pz = pyrazol-1-yl, E = S (1) or Se (2)), which have been characterized by NMR, IR and elemental analysis. The molecular structure of 2 determined by X-ray structure analysis indicates that bis(3,5-dimethylpyrazol-1-yl)methylselenolate is a bidentate monoanionic κ2-[N,Se] chelating ligand. The treatment of CH(3,5-Me2Pz)2ESnPh2Cl with W(CO)5THF resulted in the decomposition of ligands to yield pyrazole derivative of (3,5-Me2PzH)W(CO)5, while direct treatment of bis(pyrazol-1-yl)methylthiolate or selenolate anions with M(CO)5THF (M = Mo or W) formed their tricarbonyl metal anions . Succedent reaction of these carbonyl metal anions with Ph2SnCl2 or Ph3SnCl yielded heterobimetalic compounds CH(Pz)2EM(CO)3SnPhnCl3−n (n = 2 or 3), which have also been characterized by 1H NMR, IR and elemental analysis. The structure of CH(3,4,5-Me3Pz)2SW(CO)3SnPh3 (8) has been confirmed by X-ray single crystal diffraction, showing that bis(3,4,5-trimethylpyrazol-1-yl)methylthiolate acts as a tridentate, monoanionic κ3-[N,S,N] chelating ligand.  相似文献   

20.
The rates of aqua substitution from [Pt{2-(pyrazol-1-ylmethyl)quinoline}(H2O)2](ClO4)2, [Pt(H2Qn)], [Pt{2-(3,5-dimethylpyrazol-1-ylmethyl)quinoline}(H2O)2](ClO4)2, [Pt(dCH3Qn)], [Pt{2-[(3,5-bis(trifluoromethyl)pyrazol-1-ylmethyl]quinoline}(H2O)2](ClO4)2, [Pt(dCF3Qn)], and [Pt{2-[(3,5-bis(trifluoromethyl)pyrazol-1-ylmethyl]pyridine}(H2O)2](ClO4)2, [Pt(dCF3Py)], with three sulfur donor nucleophiles were studied. The reactions were followed under pseudo-first-order conditions as a function of nucleophile concentration and temperature using a stopped-flow analyzer and UV/visible spectrophotometry. The substitution reactions proceeded sequentially. The second-order rate constants for substituting the aqua ligands in the first substitution step increased in the order Pt(dCH3Qn) < Pt(dCF3Qn) < Pt(H2Qn) < Pt(dCF3Py), while that of the second substitution step was Pt(dCH3Qn) < Pt(dCF3Qn) < Pt(dCF3Py) < Pt(H2Qn). The reactivity trends confirm that the quinoline substructure in the (pyrazolylmethyl)quinoline ligands acts as an apparent donor of electron density toward the metal center rather than being a π-acceptor. Measured pKa values from spectrophotometric acid–base titrations were Pt(H2Qn) (pKa1 = 4.56; pKa2 = 6.32), Pt(dCH3Qn) (pKa1 = 4.88; pKa2 = 6.31), Pt(dCF3Qn) (pKa1 = 4.07; pKa2 = 6.35), and Pt(dCF3Py) (pKa1 = 4.76; pKa2 = 6.27). The activation parameters from the temperature dependence of the second-order rate constants support an associative mechanism of substitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号