首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unimolecular decomposition processes of ethylene glycol have been investigated with the QCISD(T) method with geometries optimized at the B3LYP/6-311++G(d,p) level. Among the decomposition channels identified, the H(2)O-elimination channels have the lowest barriers, and the C-C bond dissociation is the lowest-energy dissociation channel among the barrierless reactions (the direct bond cleavage reactions). The temperature and pressure dependent rate constant calculations show that the H(2)O-elimination reactions are predominant at low temperature, whereas at high temperature, the direct C-C bond dissociation reaction is dominant. At 1 atm, in the temperature range 500-2000 K, the calculated rate constant is expressed to be 7.63 × 10(47)T(-10.38) exp(-42262/T) for the channel CH(2)OHCH(2)OH → CH(2)CHOH + H(2)O, and 2.48 × 10(51)T(-11.58) exp(-43593/T) for the channel CH(2)OHCH(2)OH → CH(3)CHO + H(2)O, whereas for the direct bond dissociation reaction CH(2)OHCH(2)OH → CH(2)OH + CH(2)OH the rate constant expression is 1.04 × 10(71)T(-16.16) exp(-52414/T).  相似文献   

2.
Polyols, a typical type of alcohol containing multiple hydroxyl groups, are being regarded as a new generation of a green energy platform. In this paper, the decomposition mechanisms for three polyol molecules, i.e., 1,2-propanediol, 1,3-propanediol, and glycerol, have been investigated by quantum chemistry calculations. The potential energy surfaces of propanediols and glycerol have been built by the QCISD(T) and CBS-QB3 methods, respectively. For the three molecules studied, the H(2)O-elimination and C-C bond dissociation reactions show great importance among all of the unimolecular decomposition channels. Rate constant calculations further demonstrate that the H(2)O-elimination reactions are predominant at low temperature and pressure, whereas the direct C-C bond dissociation reactions prevail at high temperature and pressure. The temperature and pressure dependence of calculated rate constants was demonstrated by the fitted Arrhenius equations. This work aims to better understand the thermal decomposition process of polyols and provide useful thermochemical and kinetic data for kinetic modeling of polyols-derived fuel combustion.  相似文献   

3.
The potential energy surface for the unimolecular decomposition of thiophenol (C(6)H(5)SH) is mapped out at two theoretical levels; BB1K/GTlarge and QCISD(T)/6-311+G(2d,p)//MP2/6-31G(d,p). Calculated reaction rate constants at the high pressure limit indicate that the major initial channel is the formation of C(6)H(6)S at all temperatures. Above 1000 K, the contribution from direct fission of the S-H bond becomes important. Other decomposition channels, including expulsion of H(2) and H(2)S are of negligible importance. The formation of C(6)H(6)S is predicted to be strong-pressure dependent above 900 K. Further decomposition of C(6)H(6)S produces CS and C(5)H(6). Overall, despite the significant difference in bond dissociation, i.e., 8-9 kcal/mol between the S-H bond in thiophenol and the O-H bond in phenol, H migration at the ortho position in the two molecules represents the most accessible initial channel.  相似文献   

4.
The new polycyclic nitramine 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (HNIW) has been focused as a considerable amount of research recently on investigating its polymorphs, relative stability, and respective reaction chemistry. It is known as CL-20 popularly, CL-20 is a very high-energy and relatively high oxygen balance value crystalline compound whose method of synthesis and detailed performance data are still classified. 5-oxo-3-nitro-1,2,4-triazole (NTO, or nitrotriazolone) was an insensitive molecule comparison general explosives, and the NTO based polymer bonded explosives (PBX) was a low vulnerability explosive. Both energetic materials are all very important high explosives, which is used in a variety of military formulations widely owing to the properties of high energy and desensitization of PBX, many researchers have demonstrated the usefulness of above two energetic materials in explosive component. In this work, the thermal decomposition characteristics of explosives CL-20 and NTO were studied using thermal analytical techniques (TG, DSC), then the compatibility of above two explosives with silicone rubber, and the decomposition kinetic parameters such as activation energies of decomposition, the frequency factor of the decompose reaction are also evaluated by non-isothermal DSC techniques.  相似文献   

5.
Density functional theory and high-level ab initio calculations were carried out to investigate three unimolecular decomposition channels of furan. All equilibrium and transition state structures along the proposed decomposition channels are fully optimized by B3LYP/6-31G** and characterized at the same level of theory by vibrational and intrinsic reaction coordinate analyses. Relative energies of the optimized structures were evaluated at theoretical levels up to QCISD(T)/6-311++G**. The theoretical results suggest that the unimolecular decomposition channel of isoxazole, proposed in an experimental study and implied to be the main decomposition channel of furan, is responsible only for the formation of HC(TRIPLE BOND)CH and H2O(DOUBLE BOND)C(DOUBLE BOND)O, minor products of furan thermal decomposition. A new decomposition mechanism, proposed in the present study, is shown to be more likely responsible for the formation of CH3C(TRIPLE BOND)CH and CO, major products of furan thermal decomposition. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 240–249, 1998  相似文献   

6.
The RRKM theory is applied to the unimolecular decomposition of fluorine fluorosulfonate. Theoretical results are compared with the available experimental values for different temperatures and a good agreement is found.
PPKM . ; .
  相似文献   

7.
A new compound, [DAG(NTO)], was prepared by mixing the NaNTO•H2O aqueous solution and diaminogaunidine hydrochloride aqueous solution. Single crystals suitable for X-ray measurement were obtained by recrystallization from water at room temperature. The crystal belongs to triclinic, space group P-1 with crystal parameters of a=0.6732(3) nm, b=0.6745(3) nm, c=0.9840(4) nm, α=88.309(7)°, β=77.255(6)°, γ=86.520(7)°, V=4.349(3) nm3, Z=2, μ=0.144 mm-1, F(000)=228, and Dc=1.674 g/cm3. The theoretical investigation on DAG(NTO) as a structural unit was carried out by B3LYP, MP2 and HF methods with 6-31+G(d) basis set. The apparent activation energy and pre-exponential constant of the exothermic decomposition reaction of DAG(NTO) are 112.15 kJ•mol-1 and 109.603 s-1, respectively. The critical temperature of thermal explosion is 208.6 ℃.  相似文献   

8.
Whereas many studies have been reported on the reactions of aliphatic hydrocarbons, the chemistry of cyclic hydrocarbons has not been explored extensively. In the present work, a theoretical study of the gas-phase unimolecular decomposition of cyclic alkyl radicals was performed by means of quantum chemical calculations at the CBS-QB3 level of theory. Energy barriers and high-pressure-limit rate constants were calculated systematically. Thermochemical data were obtained from isodesmic reactions, and the contribution of hindered rotors was taken into account. Classical transition state theory was used to calculate rate constants. The effect of tunneling was taken into account in the case of CH bond breaking. Three-parameter Arrhenius expressions were derived in the temperature range of 500-2000 K at atmospheric pressure, and the CC and CH bond breaking reactions were studied for cyclic alkyl radicals with a ring size ranging from three to seven carbon atoms, with and without a lateral alkyl chain. For the ring-opening reactions, the results clearly show an increase of the activation energy as the pi bond is being formed in the ring (endo ring opening) in contrast to the cases in which the pi bond is formed on the side chain (exo ring opening). These results are supported by analyses of the electronic charge density that were performed with Atoms in Molecules (AIM) theory. For all cycloalkyl radicals considered, CH bond breaking exhibits larger activation energies than CC bond breaking, except for cyclopentyl for which the ring-opening and H-loss reactions are competitive over the range of temperatures studied. The theoretical results compare rather well with the experimental data available in the literature. Evans-Polanyi correlations for CC and CH beta-scissions in alkyl and cycloalkyl free radicals were derived. The results highlight two different types of behavior depending on the strain energy in the reactant.  相似文献   

9.
The conformational distribution and unimolecular decomposition pathways for the n-propylperoxy radical have been generated at the CBS-QB3, B3LYP/6-31+G and mPW1K/6-31+G levels of theory. At each of the theoretical levels, the 298 K Boltzmann distributions and rotational profiles indicate that all five unique rotamers of the n-propylperoxy radical can be expected to be present in significant concentrations at thermal equilibrium. At the CBS-QB3 level, the 298 K distribution of rotamers is predicted to be 28.1, 26.4, 19.6, 14.0, and 11.9% for the gG, tG, gT, gG', and tT conformations, respectively. The CBS-QB3 C-OO bond dissociation energy (DeltaH298 K) for the n-propylperoxy radical has been calculated to be 36.1 kcal/mol. The detailed CBS-QB3 potential energy surface for the unimolecular decomposition of the n-propylperoxy radical indicates that important bimolecular products could be derived from two 1,4-H transfer mechanisms available at T < 500 K, primarily via an activated n-propylperoxy adduct.  相似文献   

10.
用量子化学B3LYP/6 - 311+G(d,p)方法优化了H2ClCS单分子分解反应驻点物种的几何构型,并在相同水平上通过频率计算和内禀反应坐标(IRC)分析对过渡态结构及连接性进行了验证.用QCISD(T)/6-311++G(d,p)方法计算各物种的单点能,并对总能量进行了零点能校正.利用经典过渡态理论(TST)与...  相似文献   

11.
Calculation methods based on hybrid Density Functional Theory (DFT) with the basis sets of the B3LYP/6‐31+G(d)//B3LYP/4‐31G(d) method and the differential overlap (INDO) program were used to derive reasonable decomposition mechanisms of 1,4,5,8‐tetranitro‐1,4,5,8‐tetraazadecalin (TNAD) and 1,3,3‐trinitroazetidine (TNAZ) explosives. All possible decomposition species and transition states, including intermediates and products, were identified and their corresponding enthalpy of formation and Gibbs free energy of formation were obtained using polyparametric modification equations. INDO bond energy calculation results reveal the weakest bonding site for reference and determine where cleavage can occur easily. This work is concerned mainly with eliminating HONO (cis or trans form). The activation energy for trans‐form HONO elimination is lower than that of cis‐form HONO elimination in the initial steps of both TNAD and TNAZ decomposition, being 18.5 kJ/mol and 33.3 kJ/mol, respectively. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

12.
3-硝基-1,2,4-三唑-5-酮的锰钴和镍配合物的分子轨道研究   总被引:2,自引:0,他引:2  
用EHMO方法计算研究3-硝基-1,2,4-三唑-5-酮(NTO)的锰、钴和镍配合物[M(H2O)6](NTO)2·2H2O(M=Mn、Co和Ni)的电子结构,通过比较原子上净电荷、原子间重叠布居、前沿分子轨道能级和组成等电子结构参数,阐明了标题物的配位键特征和热解实验.  相似文献   

13.
NTO球形化粒子的结构与形貌   总被引:2,自引:0,他引:2  
3-硝基-1,2,4-三唑-5-酮(NTO)是一种能量接近RDX,感度接近TATB的高能低感炸药[1-3],美国将其作为混合炸药研制计划的主要成分[4]。但合成反应过程直接得到的NTO呈典型的棒状结构,其长径比约为3:1,对冲击波刺激敏感,且成型性能较差,在铸装炸药中会导致装药时的粘度增高,不利于浇  相似文献   

14.
本文首次用碳酸铯与NTO直接合成新的Cs NTO配合物。采用元素分析和化学分析法确定了配合物的组成。用红外光谱法 ,热分析法和X ray粉末衍射法进行了物理化学表征  相似文献   

15.
Quantum chemical calculations of the geometric structure, vertical excitation energies, and ionization potentials for the isomeric pair of 1,3- and 1,4-cyclohexadienes and their mono- and dications have been performed employing a variety of theoretical methods and basis sets. The computed ionization potentials and electronic excitation energies are used to evaluate the range of internal energies available for fragmentation of the cations following multiphoton resonance ionization of the cyclohexadienes in intense laser field. The conditions governing the competition between multiple ionization and decomposition of the ions are also discussed. Calculations of stationary points on the potential energy surfaces for various fragmentation channels and relative product yields at different available internal energies are then utilized to analyze the trends in branching ratios of major dissociation products of the 1,4-cyclohexadiene(2+) dication, which include C(3)H(3)(+) + C(3)H(5)(+), C(2)H(3)(+) + C(4)H(5)(+), and C(4)H(3)(+) + C(2)H(5)(+).  相似文献   

16.
A review of the literature on the flammability and decomposition of poly(oxy-1,4-phenyleneoxy-1,4-phenylenecarbonyl-1,4-phenylene) (PEEK) is presented. This paper provides an overview of the flammability of PEEK and its decomposition mechanisms. Based on this literature, mechanisms have been suggested which attempt to explain the products formed at each stage of PEEK decomposition and indicate the intermediates which should be formed at each of these stages.  相似文献   

17.
Nonempirical quantum-chemical calculations have been performed in the 4-31G basis on the equilibrium geometry and vibrational frequencies of difluorochloromethane, as well as on the transition state in the decomposition CHF2ClCF2+HCl. The potentialenergy surface has been constructed and a simplified 1D dynamic model has been formulated for the reaction, which is based on dividing the degrees of freedom into active (dynamic) and adiabatic ones. Measurements on the reaction kinetics have been analyzed from calculations on the rate constant from the RRKM theory and within the framework of the 1D model.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 23, No. 3, pp. 274–281, May–June 1987.I am indebted to M. V. Bazilevskii, M. Ya. Gol'denberg, S. Ya. Umanskii, A. I. Voronin, and M. A. Teitel'boim for useful discussions.  相似文献   

18.
Microcanonical rate constants k(E) and canonical rate constants k(T) for unimolecular reactions have been obtained through the calculations of cumulative reaction probabilities N(E) with the unsymmetrical Eckart potential tunneling correction. By way of example, the reactions HCN→CNH (I) and FNC→NCF (II) have been employed. For reaction (I), the calculated rate constants are in agreement with the experimental data; for reaction (II), the results are in accordance with the rate constants kCVT/MEPSAG(T) calculated by the common program POLYRATE.  相似文献   

19.
The thermal decomposition of the 2-chloroallyl radical, CH(2)CClCH(2) --> CH(2)CCH(2) + Cl (1), was studied using the laser photolysis/photoionization mass spectrometry technique. Rate constants were determined in time-resolved experiments as a function of temperature (720-840 K) and bath gas density ([He] = (3-12) x 10(16), [N(2)] = 6 x 10(16) molecule cm(-3)). C(3)H(4) was observed as a primary product of reaction 1. The rate constants of reaction 1 are in the falloff, close to the low-pressure limit, under the conditions of the experiments. The potential energy surface (PES) of reaction 1 was studied using a variety of quantum chemical methods. The results of the study indicate that the minimum energy path of the CH(2)CClCH(2) dissociation proceeds through a PES plateau corresponding to a weakly bound Cl-C(3)H(4) complex; a PES saddle point exists between the equilibrium CH(2)CClCH(2) structure and the Cl-C(3)H(4) complex. The results of quantum chemical calculations, the rate constant values obtained in the experimental study, and literature data on the reverse reaction of addition of Cl to allene were used to create a model of reactions 1 and -1. The experimental dependences of the rate constants on temperature and pressure were reproduced in RRKM/master equation calculations. The reaction model provides expressions for the temperature dependences of the high-pressure-limit and the low-pressure-limit rate constants and the falloff broadening factors (at T = 300-1600 K): k(infinity)(1) = 1.45 x 10(20)T(-1.75) exp(-19609 K/T) s(-1), k(infinity)(-)(1) = 8.94 x 10(-10)T(-0.40) exp(481 K/T) cm(3) molecule(-1) s(-1), k(1)(0)(He) = 5.01 x 10(-32)T(-12.02) exp(-22788 K/T) cm(3) molecule(-1) s(-1), k(1)(0)(N(2)) = 2.50 x 10(-32)T(-11.92) exp(-22756 K/T) cm(3) molecule(-1) s(-1), F(cent)(He) = 0.46 exp(-T/1001 K) + 0.54 exp(-T/996 K) + exp(-4008 K/T), and F(cent)(N(2)) = 0.37 exp(-T/2017 K) + 0.63 exp(-T/142 K) + exp(-4812 K/T). The experimental data are not sufficient to specify all the parameters of the model; consequently, some of the model parameters were obtained from quantum chemical calculations and from analogy with other reactions of radical decomposition. Thus, the parametrization is most reliable under conditions close to those used in the experiments.  相似文献   

20.
通过3-硝基-1, 2, 4-三唑-5-酮(NTO)与氢氧化钾水溶液反应,制备了标题配合物, 并用TG, 元素分析, 红外光谱分析对它进行了表征。其结构用单晶分析法测定, 所得晶体学参数为a=0.6408(1),b=0.8218(1), c=1.2626(1)nm, β=100.63ⅲ(1), V=0.6535(1)nm^3,Z=4, Dc=1.892g.cm^-^3, μ=0.785mm^-^1, F(000)=376; 晶体属单斜晶系, 空间群为P21/n, 最终偏离因子R为0.0246。用EHMO计算表明, 标题化合物主要是靠静电引力形成的配合物, 中心原子K与H2O的配位较K与NTO环的结合弱, 预示热解优先脱水。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号