共查询到20条相似文献,搜索用时 15 毫秒
1.
J.P. Hirth 《哲学杂志》2013,93(27):3177-3182
The author affirms the previous position and responds to specific comments raised by Cahn in the preceding article. 相似文献
2.
J.P. Hirth 《哲学杂志》2013,93(27):3162-3169
A recent paper criticized the standard treatment of Cottrell atmospheres, relevant to solid-solution hardening. We show that the treatment in current texts is correct within the standard assumptions of dislocation theory. Nonlinear treatments of the atmosphere are discussed. We also show that no current theory of such atmospheres includes complete nonlinear screening of the dislocation strain field. 相似文献
3.
We report a method to incorporate dislocation climb controlled by bulk diffusion in a three-dimensional discrete dislocation dynamics (DDD) simulation for fcc metals. In this model we couple the vacancy diffusion theory to the DDD in order to obtain the climb rate of the dislocation segments. The capability of the model to reproduce the motion of climbing dislocations is examined by calculating several test-cases of pure climb-related phenomena and comparing the results with existing analytical predictions and experimental observations. As test-cases, the DDD is used to study the activation of Bardeen–Herring sources upon the application of an external stress or under vacancy supersaturation. Loop shrinkage and expansion due to vacancy emission or absorption is shown to be well described by our model. In particular, the model naturally describes the coarsening of a population of loops having different sizes. 相似文献
4.
Quantitative analysis of the precipitate species and solute distribution was carried out on Al–Mg–Si–Cu alloy 6061 aged to peak hardness using a conventional T6 heat treatment and the so-called T6I6 heat treatments. In this latter, a dwell period at reduced temperature (65°C) is introduced into the T6 ageing cycle (at 177°C or 150°C) which modifies the microstructure and results in the simultaneous improvement of both tensile properties and fracture toughness. Analysis of three-dimensional atom probe data reveals that the superior mechanical properties of the T6I6/177 temper are achieved by a combined effect of a greater consumption of solute atoms by precipitates, an increased number density of fine precipitates and the presence of greater fractions of the effective strengthening precipitates in the final microstructure. Three types of precipitates were found to be characteristic of the peak aged conditions: β′′ precipitates, Guinier–Preston zones and Mg–Si(–Cu) co-clusters. The composition of the strengthening precipitates was found to vary over a wide range for the different heat treatment schedules, corresponding to a variation in the number density of stable nuclei, without any accompanying change in their morphology. All precipitates were found to contain substantial quantities of aluminium. The results also indicate that the strengthening precipitates are preferentially formed from Si-rich nuclei that contain Cu atoms, as opposed to Cu-free nuclei. 相似文献
5.
本文使用Stillinger-Weber势函数和周期性边界条件,通过在原子尺度上的分子动力学计算研究了60°位错的位错心能量和运动情况.首先提出了相对简单的建立位错偶极子的新方法.在此基础上,借助于最近得到的对周期性映像作用的评估理论,由不同大小的3维计算模型得到的位错心能量的平均值为0.43 eV,这一结果不同于先前文献中的报导.另一方面,为研究位错运动在较大温度和压力范围下的表现,提出了相应解决方法来避免位错心在高温模拟环境时测量的不精确性.模拟结果显示位错速度相对于温度的变化曲线表现为波动形式.而且,位错的速度随模拟温度的升高而降低,这一结果与声子拖拽模型相吻合. 相似文献
6.
The structure and dynamics of water in a thick film on an ionic surface are studied by molecular dynamic simulations. We find that there is a dense monolayer of water molecules in the vicinity of the surface. Water molecules within this layer not only show an upright hydrogen-down orientation, but also an upright hydrogen-up orientation. Thus, water molecules in this layer can form hydrogen bonds with water molecules in the next layer. Therefore, the two-dimensional hydrogen bond network of the first layer is disrupted, mainly due to the O atoms in this layer, which are affected by the next layer and are unstable. Moreover, these water molecules exhibit delayed dynamic behavior with relatively long residence time compared with those bulk-like molecules in the other layers. Our study should be helpful to further understand the influence of water film thickness on the interfacial water at the solid-liquid interface. 相似文献
7.
Dislocation climb mobilities, assuming vacancy bulk diffusion, are derived and implemented in dislocation dynamics simulations to study the coarsening of vacancy prismatic loops in fcc metals. When loops cannot glide, comparison of the simulations with a coarsening model based on the line tension approximation shows good agreement. Dislocation dynamics simulations with both glide and climb are then performed. Allowing for glide of the loops along their prismatic cylinders leads to faster coarsening kinetics, as direct coalescence of the loops is now possible. 相似文献
8.
The mechanical behaviour of polycrystalline material is closely correlated to grain size. In this study, we investigate the size-dependent phenomenon in multi-phase steels using a continuum dislocation dynamic model coupled with viscoplastic self-consistent model. We developed a dislocation-based strain gradient plasticity model and a stress gradient plasticity model, as well as a combined model, resulting in a theory that can predict size effect over a wide range of length scales. Results show that strain gradient plasticity and stress gradient plasticity are complementary rather than competing theories. The stress gradient model is dominant at the initial strain stage, and is much more effective for predicting yield strength than the strain gradient model. For larger deformations, the strain gradient model is dominant and more effective for predicting size-dependent hardening. The numerical results are compared with experimental data and it is found that they have the same trend for the yield stress. Furthermore, the effect of dislocation density at different strain stages is investigated, and the findings show that the Hall–Petch relation holds for the initial strain stage and breaks down for higher strain levels. Finally, a power law to describe the size effect and the transition zone between the strain gradient and stress gradient dominated regions is developed. 相似文献
9.
在FCC单晶铜中构造了滑移面为(111),伯格矢量为b=[112]/6的圆形不完全位错环.采用分子动力学方法模拟了该位错环在0—350 K温度区间内的自收缩过程.模拟结果发现:零温度下,位错不能跨越Peierls-Nabarro势垒运动,迁移速度为0;50 K温度下,螺型和刃型位错具有基本相同的迁移速度;随温度增加,刃型位错具有较大迁移速度;温度较高时,位错核宽度进一步增加;小位错环周围的局部应力,引起4个脱体位错环;脱体位错环在原位错的应力作用下逐渐生长,原位错消失后,在自相关键词:单晶铜位错环分子动力学位错源 相似文献
10.
To study the nanoscopic interaction between edge dislocations and a phase boundary within a two-phase microstructure the effect of the phase contrast on the internal stress field due to the dislocations needs to be taken into account. For this purpose a 2D semi-discrete model is proposed in this paper. It consists of two distinct phases, each with its specific material properties, separated by a fully coherent and non-damaging phase boundary. Each phase is modelled as a continuum enriched with a Peierls–Nabarro (PN) dislocation region, confining dislocation motion to a discrete plane, the glide plane. In this paper, a single glide plane perpendicular to and continuous across the phase boundary is considered. Along the glide plane bulk induced shear tractions are balanced by glide plane shear tractions based on the classical PN model. The model's ability to capture dislocation obstruction at phase boundaries, dislocation pile-ups and dislocation transmission is studied. Results show that the phase contrast in material properties (e.g. elastic stiffness, glide plane properties) alone creates a barrier to the motion of dislocations from a soft to a hard phase. The proposed model accounts for the interplay between dislocations, external boundaries and phase boundary and thus represents a suitable tool for studying edge dislocation–phase boundary interaction in two-phase microstructures. 相似文献
11.
位错的攀移运动对高温下晶体材料的塑性行为有重要影响,为了能够有效揭示攀移的物理本质及其对塑性行为的作用,本文基于点缺陷扩散理论,通过将体扩散和管扩散机理的共同作用与三维离散位错动力学耦合,建立了适用条件更广的位错攀移模型. 利用此模型我们模拟了单个及多个棱柱型位错环的收缩变形过程,发现影响位错攀移速率的决定因素不是传统理论认为的机械攀移力,而是位错周围(体扩散)及位错段上(管扩散)的空位浓度梯度. 该模型也能够完全重现棱柱型位错环群的粗化过程中不同位错环半径及晶体内平均空位浓度随时间变化的三个阶段.关键词:位错攀移点缺陷扩散理论位错动力学棱柱位错环 相似文献
12.
The acoustoplastic effect in metals is routinely utilised in industrial processes involving forming, machining and joining, but the underlying mechanism is still not well understood. There have been earlier suggestions that dislocation mobility is enhanced intrinsically by the applied ultrasound excitation, but in subsequent deliberations it is routinely assumed that the ultrasound merely adds extra stresses to the material without altering its dislocation density or intrinsic resistance to deformation. In this study, a dislocation dynamics simulation was carried out to investigate the interactions of dislocations under the combined influence of quasi-static and oscillatory stresses. Under such combined stress states, dislocation annihilation is found to be enhanced leading to larger strains at the same load history. The simulated strain evolution under different stress schemes also closely resembles certain previously obtained experimental observations. The discovery here goes far beyond the simple picture that the ultrasound effect is merely an added-stress one, since here, the intrinsic strain-hardening potency of the material is found to be reduced by the ultrasound, through its effect on enhancing dislocation annihilation. 相似文献
13.
Markus Lazar 《哲学杂志》2013,93(34):3246-3275
AbstractNon-singular dislocation continuum theories are studied. A comparison between Peierls–Nabarro dislocations and straight dislocations in strain gradient elasticity is given. The non-singular displacement fields, non-singular stresses, plastic distortions and dislocation core shapes are analysed and compared for the two models. The main conclusion of this study is that due to their characteristic properties, the non-singular displacement fields, non-singular stresses and dislocation core shape of screw and edge dislocations obtained in the framework of strain gradient elasticity are more realistic and physical than the corresponding fields of the Peierls–Nabarro model. Strain gradient elasticity of dislocations is a continuum dislocation theory including a weak non-locality within the dislocation core and predicting the size and shape of the dislocation core. The dislocation core is narrower in the strain gradient elasticity dislocation model than in the Peierls–Nabarro model and more evenly distributed in two dimensions. The present analysis shows that for the modelling of the dislocation core structure the non-singular dislocation fields of strain gradient elasticity are the suitable ones. 相似文献
14.
将位错的增殖、淹没与相互反应看作化学反应,位错在热激活作用下具有扩散性质。因此,位错系统是一个反应-扩散系统。依据自组织理论,给出了两个位错密度演化动力学方程,当系统发生结构失稳之后,第一个方程变成第二个方程;第一个方程含有对称性破缺,按Higgs机制将发射偶极子。 相似文献
15.
16.
AbstractHydrogen atoms have a wide variety of effects on the mechanical performance of metals, and the underlying mechanisms associated with effects on plastic flow and embrittlement remain to be discovered or validated. Here, the reduction in the plastic flow stress (softening) due to hydrogen atoms in solute-strengthened metals, previously proposed by Sofronis et al. is demonstrated at the atomistic level. Glide of an edge dislocation through a field of solutes in a nickel matrix, both in the absence of hydrogen and in the presence of H bound to the solutes, is modelled. The ‘solutes’ here are represented by vacancies, enabling use of accurate binary Ni–H interatomic potentials. Since vacancies have a misfit strain tensor in the Ni matrix and also bind hydrogen atoms, they are excellent surrogates for study of the general phenomenon. The binding of H to the solute (vacancy) reduces the misfit volume to nearly zero but also creates a non-zero tetragonal distortion. Solute strengthening theory is used to establish the connection between strength and solute/hydrogen concentration and misfit strain tensor. Simulations show that when a dislocation moves through a field of random vacancy ‘solutes’, the glide stress is reduced (softening) when H is bound to the solutes. Trends in the simulations are consistent with theory predictions. Trends of softening or hardening by H in metal alloys can thus be made by computing the misfit strain tensor for a desired solute in the chosen matrix with and without bound hydrogen atoms. Pursuing this, density functional theory calculations of the interaction of H with carbon and sulphur solutes in a Ni matrix are presented. These solutes/impurities do not bind with H and the complexes have larger misfit strains, indicative of H-induced strengthening rather than softening for these cases. Nonetheless, H/solute interactions are the only mechanism, to date, that shows nanoscale evidence of plastic softening due to hydrogen associated with the hydrogen-enhanced localised plasticity concept in fcc metals. 相似文献
17.
基于连续介质位错理论提出一种新的位错原子分布构造方式,理论上可以构造出任意形状和任意Burgers矢量的位错结构.利用该方法,选用FCC单晶铜为模拟介质,构造Burgers矢量为b=[110]/2的刃型全位错和Burgers矢量为b=[112]/6圆环形不完全位错环,并使用分子动力学方法模拟全位错的扩展分解过程和不全位错环在自应力作用下的收缩过程,模拟结果与理论分析一致.该方法的优点在于可以方便地构造出其他传统方法难以构造的位错闭合结构——位错环,从而使位错环的细致研究成为可能. 相似文献
18.
19.
20.
Markus Lazar 《哲学杂志》2013,93(25):3327-3342
We investigate the non-uniform motion of straight dislocations in infinite media using the theory of incompatible elastodynamics. The equations of motion are derived for non-uniformly moving screw dislocations, gliding edge and climbing edge dislocations. The exact closed-form solutions of the elastic fields are calculated. The fields of the elastic velocity and elastic distortion surrounding the arbitrarily moving dislocations are given explicitly in the form of integral representations free of non-integrable singularities. The elastic fields describe the response in the form of non-uniformly moving elastic waves caused by the motion of the dislocation. 相似文献