首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the quasichemical theory of molecular solutions, the hydration free energy is spatially partitioned in a three-step thermodynamic process: cavity formation, solute insertion into the cavity, and relaxation of the cavity constraint. In the alternative local molecular field theory that focuses on the relationship of fluid structure and forces, the interaction energies are directly partitioned into local and far-field components; a restructured local potential incorporates information from the far-field interactions at the mean-field level. Here the quasichemical and local molecular field theories are related via energetic partitioning of the potential distribution theorem free energy. The resulting theory leads to a free energy division in which the local contribution requires direct evaluation, but the far-field component can be accurately estimated at the Gaussian level. A numerical approach for computing hydration free energies is developed that employs interaction energy distributions from several sampling states. Classical model problems of nonpolar, polar, and ionic hydration are presented to illustrate the theory. Extensions of the theory for estimating free energies at the quantum level are also discussed.  相似文献   

2.
Classical density functional theory (DFT) of inhomogeneous fluids is applied to an explicit solvent ‘semi-primitive’ model (SPM) of ionic solutions to investigate the influence of ionic solutes on the wetting behaviour of a solvent in contact with a neutral or charged planar substrate. The SPM is made up of three species of hard sphere particles with different diameters, interacting via an attractive Yukawa potential to model excluded volume and cohesion. The solvent particles are neutral, while the monovalent anions and cations are oppositely charged. The polar nature of the solvent is modelled by a continuum dielectric permittivity linked to the local solvent density. All three species interact with the impenetrable substrate via an attractive external potential. While excluded volume effects are accurately described by a Rosenfeld ‘fundamental measure’ free energy functional, the short range Yukawa attraction and Coulombic interactions are treated within the mean-field approximation. The ionic solutes are found to have a significant impact on the wetting behaviour of the solvent, in particular on the wetting temperature. Strong electric fields, or long-ranged (weakly screened) Coulombic forces are shown to have the propensity to change the wetting transition from second to first order. The cation–anion size asymmetry leads to charge separation on the liquid–vapour interface of the solution, which in turn can induce a drying transition on the liquid side of liquid–vapour coexistence.  相似文献   

3.
The study of elastic interaction between a dislocation and an inclusion (i.e., a region transformed without change of elastic constants) in an elastic continuum is extended to the cases when the singular dislocation line intersects or touches the inclusion or is situated inside it. The interaction energy is shown to be a finite and continuous function of position of the inclusion. The interaction of an edge dislocation with a dilatation sphere and of a screw dislocation with a sphere transformed into ellipsoid in isotropic continuum are studied in detail. The spherical inclusion which is considered as a rough model of a point defect (e.g. of carbon atom in iron) has a maximum and minimum energy position near the dislocation line so that the binding energy can be calculated in a consistent way.  相似文献   

4.
A.R. Massih 《哲学杂志》2013,93(31):3961-3980
A model for nucleation of second phase at or around a dislocation in a crystalline solid is considered. The model employs the Ginzburg–Landau theory of phase transitions comprising the sextic term in the order parameter (η6) in the Landau free energy. The ground state solution of the linearised time-independent Ginzburg–Landau equation is derived, through which the spatial variation of the order parameter is delineated. Moreover, a generic phase diagram indicating tricritical behaviour near and away from the dislocation is depicted. The relation between classical nucleation theory and the Ginzburg–Landau approach is discussed, for which the critical formation energy of the nucleus is related to the maximum of the Landau potential energy. A numerical example illustrating the application of the model to the case of nucleation of hydrides in zirconium alloys is provided.  相似文献   

5.
In this study, the modified embedded-atom method (MEAM) was applied to compare the predictions of dislocation core properties obtained by molecular statics with the continuum predictions obtained in the framework of the simplified 1D-Peierls–Nabarro model. To this end, a set of four fictive Li potentials in the MEAM framework was proposed with the condition that all four potentials reproduce the same elastic constants, the same transition energies between bcc and fcc crystal structures, and between bcc and hcp crystal structures, while the unstable stacking fault energy on the plane {110} in the direction <111> was varied around the value predicted by first-principles. Within these potentials, direct atomistic calculations were performed to evaluate dislocation core properties such as dislocation half width and Peierls stress and the results were compared with continuum predictions. We found that the trends predicted by the Peierls–Nabarro model, i.e. (i) a decrease of the dislocation half width with increasing unstable stacking fault energy, and (ii) an increase of the Peierls stress with increasing the magnitude of the unstable stacking fault energy, were recovered using atomic calculations in the MEAM framework. Moreover, the magnitude of the dislocation half width and the Peierls stress calculated in the MEAM framework are in good agreement with the Peierls–Nabarro predictions when the dislocation half width is determined using a generic strategy. Specifically, the dislocation half width is defined as the distance for which the disregistery is included between b/4 and 3b/4. It was, therefore, demonstrated herein that the set of fictive potentials could be parameterized in the MEAM framework to validate or to disprove the continuum theory using atomistic methods.  相似文献   

6.
Benoit Gars 《哲学杂志》2013,93(11):1390-1421
The effect of a free surface on the Peierls stress of a perfect dislocation, as well as on one of two dislocation partials under a free surface, has been accounted for by considering the Lubarda–Markenscoff variable-core dislocation model (VCM). The VCM dislocation smears the Burgers vector, while producing on the slip plane the Peierls–Nabarro sinusoidal relation between the stress and the slip discontinuity with a variable width. Here the core radius is allowed to depend on the distance to the free surface and the other partial. The Peierls stress is computed as a configurational force by accounting for all the energies and the image stresses to satisfy the traction-free boundary conditions. The results are applied to aluminum and copper and comparisons are made with atomistic calculations in the literature that show that the partials merge as they approach the free surface.  相似文献   

7.
《Physics letters. A》2002,306(1):21-24
In this work we study the interaction of a charged quantum mechanical particle with magnetic moment in a space with a screw dislocation. We focus on the influence of the screw dislocation on the energy spectrum and eigenfunctions of the electron with spin-1/2 in a uniform magnetic field. We use the approach of the continuum theory of defects that is isomorphic to three-dimensional gravity.  相似文献   

8.
9.
A continuum phase field theory and corresponding numerical solution methods are developed to describe deformation twinning in crystalline solids. An order parameter is associated with the magnitude of twinning shear, i.e., the lattice transformation associated with twinning. The general theory addresses the following physics: large deformations, nonlinear anisotropic elastic behavior, and anisotropic phase boundary energy. The theory is applied towards prediction of equilibrium phenomena in the athermal and non-dissipative limit, whereby equilibrium configurations of an externally stressed crystal are obtained via incremental minimization of a free energy functional. Outcomes of such calculations are elastic fields (e.g., displacement, strain, stress, and strain energy density) and the order parameter field that describes the size and shape of energetically stable twin(s). Numerical simulations of homogeneous twin nucleation in magnesium single crystals demonstrate fair agreement between phase field solutions and available analytical elasticity solutions. Results suggest that critical far-field displacement gradients associated with nucleation of a twin embryo of minimum realistic size are 4.5%–5.0%, with particular values of applied shear strain and equilibrium shapes of the twin somewhat sensitive to far-field boundary conditions and anisotropy of twin boundary surface energy.  相似文献   

10.
In this study, we calculate the interaction energy of intrinsic point defects vacancies and interstitials) with screw dislocations in body-centered cubic iron. First (we calculate the dipole tensor of a defect in the bulk crystal using molecular statics. Using a formulation based on linear elasticity theory, we calculate the interaction energy of the defect and the dislocation using both isotropic and anisotropic strain fields. Second, we perform atomistic calculations using molecular statics methods to directly calculate the interaction energy. Results from these two methods are compared. We verify that continuum methods alone are unable to correctly predict the interactions of defects and dislocations near the core. Although anisotropic theory agrees qualitatively with atomistics far from the core, it cannot predict which dumbbell orientations are stable and any continuum calculations must be used with caution. Spontaneous absorption by the core of both vacancies and dumbbells is seen. This paper demonstrates and discusses the differences between continuum and atomistic calculations of interaction energy between a dislocation core and a point defect.  相似文献   

11.
Multiscale dislocation dynamics plasticity (MDDP) was used to investigate shock-induced deformation in monocrystalline copper. In order to enhance the numerical simulations, a periodic boundary condition was implemented in the continuum finite element (FE) scale so that the uniaxial compression of shocks could be attained. Additionally, lattice rotation was accounted for by modifying the dislocation dynamics (DD) code to update the dislocations’ slip systems. The dislocation microstructures were examined in detail and a mechanism of microband formation is proposed for single- and multiple-slip deformation. The simulation results show that lattice rotation enhances microband formation in single slip by locally reorienting the slip plane. It is also illustrated that both confined and periodic boundary conditions can be used to achieve uniaxial compression; however, a periodic boundary condition yields a disturbed wave profile due to edge effects. Moreover, the boundary conditions and the loading rise time show no significant effects on shock–dislocations interaction and the resulting microstructures. MDDP results of high strain rate calculations are also compared with the predictions of the Armstrong–Zerilli model of dislocation generation and movement. This work confirms that the effect of resident dislocations on the strain rate can be neglected when a homogeneous nucleation mechanism is included.  相似文献   

12.
Markus Lazar 《哲学杂志》2013,93(34):3246-3275
Abstract

Non-singular dislocation continuum theories are studied. A comparison between Peierls–Nabarro dislocations and straight dislocations in strain gradient elasticity is given. The non-singular displacement fields, non-singular stresses, plastic distortions and dislocation core shapes are analysed and compared for the two models. The main conclusion of this study is that due to their characteristic properties, the non-singular displacement fields, non-singular stresses and dislocation core shape of screw and edge dislocations obtained in the framework of strain gradient elasticity are more realistic and physical than the corresponding fields of the Peierls–Nabarro model. Strain gradient elasticity of dislocations is a continuum dislocation theory including a weak non-locality within the dislocation core and predicting the size and shape of the dislocation core. The dislocation core is narrower in the strain gradient elasticity dislocation model than in the Peierls–Nabarro model and more evenly distributed in two dimensions. The present analysis shows that for the modelling of the dislocation core structure the non-singular dislocation fields of strain gradient elasticity are the suitable ones.  相似文献   

13.
Ph. Carrez  A.M. Walker  A. Metsue 《哲学杂志》2013,93(16):2477-2485
Computer simulations have previously been used to derive the atomic scale properties of the cores of screw dislocations in Mg2SiO4 forsterite by direct calculation using parameterized potentials and via the Peierls–Nabarro model using density functional theory. We show that, for the [001] screw dislocation, the parameterized potentials reproduce key features of generalized stacking fault energies when compared to the density functional theory results, but that the predicted structure of the dislocation core differs between direct simulation and the Peierls–Nabarro model. The [001] screw dislocation is shown to exhibit a low-energy non-planar core. It is suggested that for this dislocation to move its core may need to change structure and form a high-energy planar structure similar to that derived from the Peierls–Nabarro model. This could lead to dislocation motion via an unlocking–locking mechanism and explain the common experimental observation of long straight screw dislocation segments in deformed olivine.  相似文献   

14.
15.
In this paper, an efficient numerical scheme is designed for a phase field model for the moving contact line problem, which consists of a coupled system of the Cahn–Hilliard and Navier–Stokes equations with the generalized Navier boundary condition [1], [2], [4]. The nonlinear version of the scheme is semi-implicit in time and is based on a convex splitting of the Cahn–Hilliard free energy (including the boundary energy) together with a projection method for the Navier–Stokes equations. We show, under certain conditions, the scheme has the total energy decaying property and is unconditionally stable. The linearized scheme is easy to implement and introduces only mild CFL time constraint. Numerical tests are carried out to verify the accuracy and stability of the scheme. The behavior of the solution near the contact line is examined. It is verified that, when the interface intersects with the boundary, the consistent splitting scheme [21], [22] for the Navier Stokes equations has the better accuracy for pressure.  相似文献   

16.
Using a recently developed multiscale simulation methodology, we describe the equilibrium behaviour of bilayer membranes under the influence of curvature-inducing proteins using a linearized elastic free energy model. In particular, we describe how the cooperativity associated with a multitude of protein–membrane interactions and protein diffusion on a membrane-mediated energy landscape elicits emergent behaviour in the membrane phase. Based on our model simulations, we predict that, depending on the density of membrane-bound proteins and the degree to which a single protein molecule can induce intrinsic mean curvature in the membrane, a range of membrane phase behaviour can be observed including two different modes of vesicle-bud nucleation and repressed membrane undulations. A state diagram as a function of experimentally tunable parameters to classify the underlying states is proposed.  相似文献   

17.
18.
The paper presents calculations of the properties of binary mixtures of hard spheres and directionally associating hard spheres, a simple model for mixtures of nonpolar molecules with water that was developed by Nezbeda and his coworkers. Extensive results from Monte Carlo simulations in the isobaric, isothermal ensemble are presented for the density, configurational energy and chemical potentials in the mixtures for fluid states over a range of temperatures, pressures and compositions. A species exchange technique is used to compute the chemical potential difference between components in the mixtures. The results obtained are compared with the predictions of first-order thermodynamic perturbation theory (TPT). It is found that this theory provides an accurate picture of the system over most of the conditions considered. Calculations are also made of vapour–liquid coexistence for the model using TPT and calculations of solid–fluid coexistence for the model using TPT and existing results for the free energy of the pure component solids. It is found that the vapour–liquid coexistence for the model is pre-empted by the solid–fluid coexistence, as had previously been found for the pure component directionally associating hard sphere system.  相似文献   

19.
Possible Mechanism of Plasticity Influenced by Magnetic Field   总被引:1,自引:0,他引:1       下载免费PDF全文
The strain energy of an edge dislocation in an external static magnetic field is determined by the theory of elasticity and electrodynamics according to the Volterra dislocation model for continuous media. The results show that the strain energy of the edge dislocation in paramagnetic states is increased due to static magnetic field and the increase in the energy of the dislocation is capable of influencing the dislocation depinning which leads to the change of plasticity. This gives an explanation on plasticity induced by magnetic field.  相似文献   

20.
Hideo Koguchi 《哲学杂志》2013,93(10):1205-1226

The deformations and the stresses in anisotropic half-regions taking into account surface stresses originating from surface energy, which exists originally at surfaces and interfaces dividing phases, are analysed theoretically. In the present paper, the equilibrium equation of force considering surface stresses is used to calculate the inelastic deformation induced by a variation in surface stresses. The problem of varying surface stresses in a half-surface of a half-infinite anisotropic domain is analysed using the theory of elasticity. This problem is related to the occurrence of cracks in contaminated, oxidized or chemisorbed surfaces. Stress analysis on the basis of continuum mechanics is performed precisely under the boundary condition taking into account surface stresses. The Fourier transform technique is applied to perform the analysis, and the components of stress and displacement are expressed in an explicit form. The shear component of bulk stress attains infinity at the edge of discontinuity of the surface stresses, and the free surface deforms like an edge dislocation. This result suggests that cracking in a chemically contaminant surface is easier than in a clean surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号