首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王斌  刘颖  叶金文 《物理学报》2012,61(18):186501-186501
利用基于密度泛函理论的第一性原理平面波赝势方法 并结合准谐徳拜模型研究了NaCl结构的TiC在高压下的弹性性质、电子结构和热力学性质. 计算所得零温零压下的晶格常数、体弹模量及弹性常数与实验值符合得很好. 零温下弹性常数和弹性模量随压强增大而增大. 通过态密度和电荷密度的分析, Ti-C键随压强增大而增强. 运用准谐德拜模型, 成功计算了TiC在高温高压下的体弹模量、熵、热膨胀系数、徳拜温度、 Grüneisen参数和比热容. 结果表明压强对体弹模量、热膨胀系数和徳拜温度的影响大于温度对其的影响. 热容随着压强升高而减小, 在高温高压下, 热容接近Dulong-Petit极限.  相似文献   

2.
Electronic structures, elastic properties and thermal stabilities of Mg17Al12, Mg2Si and Al2Y have been determined from first-principle calculations. The calculated heats of formation and cohesive energies show that Al2Y has the strongest alloying ability and structural stability. The brittle behavior and structural stability mechanism is also explained through the electronic structures of these intermetallic compounds. The elastic constants are calculated, the bulk moduli, shear moduli, Young's moduli and Poisson ratio value are derived, the brittleness and plasticity of these phases are discussed. Gibbs free energy, Debye temperature and heat capacity are calculated and discussed.  相似文献   

3.
Using ab initio calculations, we have studied the structural, electronic and elastic properties of M2GeC, with M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W. Geometrical optimizations of the unit cell are in agreement with the available experimental data. The band structures show that all studied materials are electrical conductors. The analysis of the site and momentum projected densities shows that bonding is due to M d-C p and M d-Ge p hybridizations. The elastic constants are calculated using the static finite strain technique. The shear modulus C 44, which is directly related to the hardness, reaches its maximum when the valence electron concentration is in the range 8.41–8.50. We derived the bulk and shear moduli, Young’s moduli and Poisson’s ratio for ideal polycrystalline M2GeC aggregates. We estimated the Debye temperature of M2GeC from the average sound velocity. This is the first quantitative theoretical prediction of the elastic constants of Ti2GeC, V2GeC, Cr2GeC, Zr2GeC, Nb2GeC, Mo2GeC, Hf2GeC, Ta2GeC and W2GeC compounds, and it still awaits experimental confirmation.  相似文献   

4.
A pulsed ultrasonic method has been used to measure the temperature dependences of the elastic moduli, the constants Cik and Sik , the anisotropy factors, the bulk moduli, and the Poisson ratios over the temperature range 300-120 ° K for NaCl and over the range 300-80 ° K for KCl. The Debye temperatures of these compounds are calculated from the elastic constants extrapolated to 0 ° K.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii Fizika, No. 6, pp. 22–28, June, 1970.  相似文献   

5.
M2AlC phases, where M is a transition metal, are layered ternary compounds that possess unusual properties. In this paper, we have calculated the elastic properties of M2AlC, with M=Ti, V, Cr, Nb and Ta, by means of ab initio total energy calculations using the projector augmented-wave method. We have derived the bulk and shear moduli, Young's moduli and Poisson's ratio for ideal polycrystalline M2AlC aggregates. We have estimated the elastic modulus of Cr2AlC with 357.7 GPa while the values of all other phases are in the range 309±10 GPa. We suggest that this can be understood based on the calculated bond energies for the M-C bonds. Furthermore, our results indicate a profound elastic anisotropy of M2AlC even compared to materials with a well-established anisotropic character such as α-alumina. Finally, we have estimated the Debye temperatures of M2AlC from the average sound velocity.  相似文献   

6.
Using ab initio calculations, we have studied the structural, elastic and electronic properties of XNCa3, with X=Ge, Sn and Pb. Geometrical optimization of the unit cell are in agreement with the available experimental data. The band structures show that all studied materials are electrical conductors. The analysis of the site and momentum projected densities, charge transfer and total valence charge density shows that the chemical bonding in XNCa3 compounds is of covalent–ionic nature with the presence of metallic character. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk, shear and Young’s moduli for ideal polycrystalline XNCa3 aggregates. By analysing the ratio between the bulk and shear moduli, we conclude that XNCa3 compounds are brittle in nature. We estimated the Debye temperature of XNCa3 from the average sound velocity.  相似文献   

7.
The Al-Cu-TM (TM = transition metal) alloy system has attracted great attention for both excellent glass-forming ability and its interesting physical properties. In this work, an investigation into the crystal, electrical and elastic properties of the AlCu2TM (TM = Ti, Zr, and Hf) compounds has been conducted by first-principles calculations based on density-functional theory. The fully relaxed structure parameters of the AlCu2TM compounds are in good agreement with previous experimental and other theoretical results. Besides, the cohesive energies of all the AlCu2TM compounds have been evaluated. The energy band and densities of state of these compounds are also obtained. According to the calculated single crystal elastic constants, all the compounds are mechanically stable. The polycrystalline bulk moduli, shear moduli, Young’s moduli and Poisson’s ratio have been deduced by using Voigt-Reuss-Hill (VRH) approximations. The calculated negative Cauchy pressure and ratio of bulk modulus to shear modulus indicated that the AlCu2TM compounds are ductile materials. The Debye temperatures of the AlCu2TM compounds decrease with increasing the TM (Ti, Zr, and Hf) atomic number.  相似文献   

8.
Using first-principles density functional calculations, the effect of high pressures, up to 40 GPa, on the structural and elastic properties of ANCa3, with A = P, As, Sb, and Bi, were studied by means of the pseudo-potential plane-waves method. Calculations were performed within the local density approximation and the generalized gradient approximation for exchange-correlation effects. The lattice constants are in good agreement with the available results. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young's modulus, Poisson's ratio and Lamé's constants for ideal polycrystalline ANCa3 aggregates. By analysing the ratio between the bulk and shear moduli, we conclude that ANCa3 compounds are brittle in nature. We estimated the Debye temperature of ANCa3 from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of PNCa3, AsNCa3, SbNCa3, and BiNCa3 compounds, and it still awaits experimental confirmation.  相似文献   

9.
We investigate the elastic and the thermodynamic properties of nanolaminate V2GeC by using the ab initio pseudopotential total energy method. The axial compressibility shows that the c axis is always stiffer than the a axis. The elastic constant calculations demonstrate that the structural stability is within 0-800 GPa. The calculations of Young's and shear moduli reveal the softening behaviour at about 300 GPa. The Possion ratio makes a higher ionic or a weaker covalent contribution to intra-atomic bonding and the degree of ionicity increases with pressure. The relationship between brittleness and ductility shows that V2GeC is brittle in ambient conditions and the brittleness decreases and ductility increases with pressure. Moveover, we find that V2GeC is largely isotropic in compression and in shear, and the degree of isotropy decreases with pressure. The Gr黱eisen parameter, the Debye temperature and the thermal expansion coefficient are also successfully obtained for the first time.  相似文献   

10.
The structural, elastic and thermodynamic properties of the α (tetragonal) and β (orthorhombic) polymorphs of the Sr2GeN2 compound have been examined in detail using ab initio density functional theory pseudopotential plane-wave calculations. Apart the structural properties at the ambient conditions, all present reported results are predicted for the first time. The calculated equilibrium lattice parameters and inter-atomic bond-lengths of the considered polymorphs are in good agreement with the available experimental data. It is found that α-Sr2GeN2 is energetically more stable than β-Sr2GeN2. The two examined polymorphs are very similar in their crystal structures and have almost identical local environments. The single-crystal and polycrystalline elastic parameters and related properties – including elastic constants, bulk, shear and Young’s moduli, Poisson’s ratio, anisotropy indexes, Pugh’s criterion, elastic wave velocities and Debye temperature – have been predicted. Temperature and pressure dependence of some macroscopic properties – including the unit-cell volume, bulk modulus, volume thermal expansion coefficient, heat capacity and Debye temperature – have been evaluated using ab initio calculations combined with the quasi-harmonic Debye model.  相似文献   

11.
Weizong Bao  Dan Liu  Mingjun Peng 《哲学杂志》2013,93(21):2681-2702
ABSTRACT

Structural properties, elastic properties, sound velocities and Debye temperatures of CsCl-type refractory TiTM, ZrTM and HfTM (TM?=?Fe, Ru, Os) intermetallics were investigated using first-principles calculations. The calculated equilibrium lattice parameters are coincided with the reported experimental and theoretical data. Based on single-crystal elastic constants, polycrystalline elastic moduli, Poisson’s ratios, sound velocities and Debye temperatures were evaluated. Anisotropies in elastic moduli of these CsCl-type intermetallics were discussed by elastic anisotropy indexes, three-dimensional surface constructions and their projections, and directional elastic modulus. The results showed that ZrFe has the highest elastic anisotropy and ZrOs presents the lowest one. Finally, sound velocities, Debye temperatures and their anisotropies were also calculated and discussed.  相似文献   

12.
The structural, elastic and electronic properties of BaZnO2 under pressure are investigated by the plane wave pseudopotential density functional theory (DFT). The calculated lattice parameters and unit cell volume of BaZnO2 at the ground state are in good agreement with the available experimental data and other theoretical data. The pressure dependences of elastic constants Cij, bulk modulus B, shear modulus G, B/G, Poisson’ s ratio σ, Debye temperature Θ and aggregate acoustic velocities VP and VS are systematically investigated. It is shown that BaZnO2 maintains ductile properties under the applied pressures. Analysis for the calculated elastic constants has been made to reveal the mechanical stability and mechanical anisotropy of BaZnO2. At the ground state, the calculated compressional and shear wave velocities are 8.26 km/s and 1.81 km/s, respectively, and the Debye temperature Θ is 240.8 K. The pressure dependences of the density of states and the bonding property of BaZnO2 are also investigated.  相似文献   

13.
We have performed theoretical studies on the elastic and thermodynamic properties of the solid solution: Ti2AlC0.5N0.5. The lattice parameters, elastic constants, bulk, shear, Young's moduli, Poisson's ratio and Debye temperature were calculated and compared with those of the end members, Ti2AlC and Ti2AlN. The temperature dependence of the bulk moduli, thermal expansion coefficient and specific heats of Ti2AlC0.5N0.5 were obtained from the quasi-harmonic Debye model. The calculated elastic and thermodynamic properties were compared with experimental data.  相似文献   

14.
刘丽  韦建军  安辛友  王雪敏  刘会娜  吴卫东 《中国物理 B》2011,20(10):106201-106201
The phase transition of gallium phosphide (GaP) from zinc-blende (ZB) to a rocksalt (RS) structure is investigated by the plane-wave pseudopotential density functional theory (DFT). Lattice constant a0, elastic constants cij, bulk modulus B0 and the pressure derivative of bulk modulus B0' are calculated. The results are in good agreement with numerous experimental and theoretical data. From the usual condition of equal enthalpies, the phase transition from the ZB to the RS structure occurs at 21.9 GPa, which is close to the experimental value of 22.0 GPa. The elastic properties of GaP with the ZB structure in a pressure range from 0 GPa to 21.9 GPa and those of the RS structure in a pressure range of pressures from 21.9 GPa to 40 GPa are obtained. According to the quasi-harmonic Debye model, in which the phononic effects are considered, the normalized volume V/V0, the Debye temperature θ, the heat capacity Cv and the thermal expansion coefficient α are also discussed in a pressure range from 0 GPa to 40 GPa and a temperature range from 0 K to 1500 K.  相似文献   

15.
Using first-principles calculations, we have studied the structural and elastic properties of M2SnC, with M=Ti, Zr, Nb and Hf. Geometrical optimization of the unit cell is in good agreement with the available experimental data. The effect of high pressures, up to 20 GPa, on the lattice constants shows that the contractions along the a-axis were higher than those along the c-axis. We have observed a quadratic dependence of the lattice parameters versus the applied pressure. The elastic constants and their pressure dependence are calculated using the static finite strain technique. A linear dependence of the elastic stiffnesses on the pressure is found. We derived the bulk and shear moduli, Young's moduli and Poisson's ratio for ideal polycrystalline M2SnC aggregates. We estimated the Debye temperature of M2SnC from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of Ti2SnC, Zr2SnC, Nb2SnC, and Hf2SnC compounds.  相似文献   

16.
First-principle calculations of structural, elastic and high pressure properties of antiperovskites XNBa3 (X=As, Sb) are performed, using the full-potential linear muffin-tin orbital (FP-LMTO) method. The local density approximation (LDA) is used for the exchange-correlation (XC) potential. Results are given for lattice constant, bulk modulus and its pressure derivatives. We have determined the elastic constants C11, C12 and C44 and their pressure dependence. We derived shear moduli, Young's modulus, Poisson's ratio and Lamé's constants for ideal polycrystalline XNBa3 aggregates. By analyzing the ratio of the bulk to shear moduli, we conclude that XNBa3 compounds are brittle in nature. We estimated the Debye temperature of XNBa3 from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of AsNBa3 and SbNBa3 compounds, and it still awaits experimental confirmation.  相似文献   

17.
Using First-principle calculations, we have studied the structural, electronic and elastic properties of M2TlC, with M = Ti, Zr and Hf. Geometrical optimization of the unit cell is in good agreement with the available experimental data. The effect of high pressures, up to 20 GPa, on the lattice constants shows that the contractions are higher along the c-axis than along the a axis. We have observed a quadratic dependence of the lattice parameters versus the applied pressure. The band structures show that all three materials are electrical conductors. The analysis of the site and momentum projected densities shows that bonding is due to M d-C p and M d-Tl p hybridizations. The M d-C p bonds are lower in energy and stiffer than M d-Tl p bonds. The elastic constants are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young’s modulus and Poisson’s ratio for ideal polycrystalline M2TlC aggregates. We estimated the Debye temperature of M2TlC from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of Ti2TlC, Zr2TlC, and Hf2TlC compounds that requires experimental confirmation.   相似文献   

18.
The elastic constants of the Al, Mg and rare earth (RE) lanthanide elements have been calculated at T=0 K by using the projector augmented-wave (PAW) method within the generalized gradient approximation (GGA). The bulk moduli, shear moduli, Young's moduli and Poisson's ratio of poly-crystalline solid are estimated from the calculated elastic constants of single crystal. Based on the quasi-harmonic Debye model, the Debye temperature, heat capacity, Grüneisen parameter and linear thermal expansion coefficient are also estimated. The present calculated results are in reasonable agreement with the available experimental data and other theoretical results. The present calculation of elastic constants for Ce also indicates that the PAW potential (named “Ce_3”), for which one f electron is kept frozen in the core and hence fix the valency of Ce to three (Ce_3) does not yield good results for the elastic constants.  相似文献   

19.
Elastic properties of NaClO3, KClO3, LiClO4, NaClO4, and KClO4 have been investigated from first principles by the method of linear combination of atomic orbitals in the gradient approximation of the density functional theory using CRYSTAL software. The elastic constants and moduli, hardness, Poisson’s ratio, and the anisotropy parameters have been calculated. The velocities of sound, the Debye temperature, the thermal conductivity, and the Grüneisen parameter have been estimated. It has been found that these compounds are mechanically stable, anisotropic, and ductile materials. The dependences of their elastic parameters on the atomic number of the cation have been calculated. The obtained results are in good agreement with the available experimental data.  相似文献   

20.
The structural, elastic, electronic properties and Debye temperature of Ni3Ta under different pressures are investigated using the first-principles method based on density functional theory. Our calculated equilibrium lattice parameters at 0 GPa well agree with the experimental and previous theoretical results. The calculated negative formation enthalpies and elastic constants both indicate that Ni3Ta is stable under different pressures. The bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio ν are calculated by the Voigt–Reuss–Hill method. The bigger ratio of B/G indicates Ni3Ta is ductile and the pressure can improve the ductility of Ni3Ta. In addition, the results of density of states and the charge density difference show that the stability of Ni3Ta is improved by the increasing pressure. The Debye temperature Θ D calculated from elastic modulus increases along with the pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号