首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于密度泛函理论框架下的第一性原理计算方法,研究了不同浓度Ag掺杂ZnO体系的电子结构和光学性质。计算结果表明,不同浓度Ag原子代替Zn原子后会导致电子结构和光学性质有显著的改变,能带随掺杂浓度的增大带隙渐渐变窄,光吸收、反射等也随银掺杂浓度的增大先是向高能端偏移再向低能端移动。这暗示Ag掺杂ZnO对其电子结构及光学性质有很大的影响,为进一步研究掺杂对ZnO性质的影响提供理论基础。  相似文献   

2.
基于密度泛函理论的第一性原理方法研究了O、Na单掺杂及O和Na共掺杂单层h-BN的形成能、电子结构和光学性质.结果表明:单掺杂体系中,O掺杂N位置、Na掺杂B位置时,掺杂形成能最低;共掺杂体系中,O和Na邻位掺杂,掺杂形成能最低.与单层h-BN相比,引入杂质原子后的体系禁带宽度均减小,其中O掺杂为n型掺杂,Na掺杂为p型掺杂,而O和Na共掺h-BN体系为直接带隙材料,有利于提高载流子的迁移率.在光学性质方面,Na掺杂h-BN体系与O和Na共掺h-BN的静介电常数均增大,在低能区介电虚部和光吸收峰均发生红移,其中Na掺杂体系红移最为显著,极化能力最强.因此Na单掺和O和Na共掺有望增强单层h-BN的光催化能力,可扩展其在催化材料、光电器件等领域的应用.  相似文献   

3.
本研究采用基于密度泛函理论的第一性原理方法,对纯锐钛矿TiO2及贵金属(Ru、Pd、Pt、Ag和Au)掺杂锐钛矿TiO2的晶格结构、能带结构、电子态密度及光学性质进行了计算。结果表明:贵金属掺杂后TiO2的晶格体积都出现了不同程度的增大;Pd和Pt掺杂后TiO2体系的禁带宽度减小,Ru、Ag和Au掺杂后体系表现出了一定的金属属性,五种贵金属掺杂TiO2后吸收光谱都有红移的趋势。掺杂形成能计算表明,除Ru金属外,富氧条件下掺杂更容易实现。  相似文献   

4.
徐雷  戴振宏  隋鹏飞  王伟田  孙玉明 《物理学报》2014,63(18):186101-186101
基于密度泛函理论,计算了外来原子X(Al,P,Ga,As,Si)双空位替代掺杂氟化石墨烯的电子特性和磁性.通过对计算结果分析发现,与石墨烯的双空位掺杂类似,氟化石墨烯的双空位掺杂也是一种较为理想的掺杂方式.通过不同原子掺杂,氟化石墨烯的电子性质与磁性均发生很大变化:Al和Ga掺杂使氟化石墨烯由半导体变为金属,并且具有磁性;P和A8掺杂使氟化石墨烯变为自旋半导体;Si掺杂氟化石墨烯仍是半导体,只改变带隙且没有磁性.进一步讨论磁性产生机制获得了掺杂原子浓度与磁性的关系,并且发现不同掺杂情况的磁性是由不同原子的不同轨道电子引起的.双空位掺杂不仅丰富了氟化石墨烯的掺杂方式,其不同电磁特性也使此类掺杂结构在未来的电子器件中具有潜在应用.  相似文献   

5.
The Cu2O and Au-doped Cu2O films are prepared on MgO(001) substrates by pulsed laser deposition. The X-ray photoelectron spectroscopy proves that the films are of Au-doped Cu2O. The optical absorption edge decreases by 1.6%after Au doping. The electronic and optical properties of pure and Au-doped cuprite Cu2O films are investigated by the first principles. The calculated results indicate that Cu2O is a direct band-gap semiconductor. The scissors operation of 1.64 eV has been carried out. After correcting, the band gaps for pure and Au doped Cu2O are about 2.17 eV and2.02 eV, respectively, decreasing by 6.9%. All of the optical spectra are closely related to the dielectric function. The optical spectrum red shift corresponding to the decreasing of the band gap, and the additional absorption, are observed in the visible region for Au doped Cu2O film. The experimental results are generally in agreement with the calculated results.These results indicate that Au doping could become one of the more important factors influencing the photovoltaic activity of Cu2O film.  相似文献   

6.
《Physics letters. A》2020,384(26):126663
Based on the density functional theory, we discussed the electronic and optical properties of graphene/ WSe2 (GW) heterostructure after lanthanides doping. Red shift appears and the optical parameter values are improved in the low energy region after the lanthanides are doped. Different doping types are also discussed. In the case of single doping, substitute Yb atom on W site will improve the peak values of the optical parameters greatly. In the case of co-doping, it is found that the effect will be more obvious when the two doped lanthanide atoms are located in the second neighboring positons. These results suggest that lanthanides doping does adjust the electronic structure and improve the optical properties of GW heterostructures, which providing useful guidance for the design of novel optical nanodevices based on two-dimensional materials.  相似文献   

7.
We investigated the electronic structure, adsorption energies, magnetic properties, dipole moment and work function of metal adatoms (Mg, Cr, Mo, Pd, Pt, and Au) adsorption on a blue phosphorene monolayer. For Mg, Pt and Au metals, the most stable state was found in hollow site while for Cr, Mo and Pd metals we found an adsorption in valley site. We suggest that the Pd and Pt atoms prefer 2D growth mode while the Mg, Cr, Mo and Au atoms prefer 3D island growth mode on monolayer phosphorene. The electronic band structures and magnetic properties were dependent on the doping site and dopant materials. For instance, the semiconducting features were preserved in Mg, Pd, Pt, and Au doped systems. However, the Cr and Mo doped systems displayed half-metallic band structures. The total magnetic moment of 4.05, 2.0 and 0.77μB/impurity atom were obtained in Cr, Mo and Au doped systems whereas the Mg, Pd and Pt doped systems remained nonmagnetic. We also investigated the magnetic interaction between two transition metal impurities. We observed ferromagnetic coupling between two transition metal impurities in Cr and Mo doped systems while the Au doped system displayed almost degenerated magnetic state. For Mg, Cr, and Mo adsorptions, we found relatively large values of dipole moments compared to those in the Pd, Pt and Au adsorptions. This resulted in a significant suppression of the work function in Mg, Cr and Mo adsorptions. Overall, adsorption can tune the physical and magnetic properties of phosphorene monolayer.  相似文献   

8.
黄蕾  刘文亮  邓超生 《物理学报》2018,67(13):136101-136101
采用基于密度泛函理论框架下的第一性原理计算,研究了不同浓度N型掺杂锗的电子结构和光学性质.掺杂元素分别为磷和铋,并对掺杂后的电子态密度和光学性质进行计算、分析.计算结果表明:N型掺杂会使得费米能级向导带方向移动.在低能区段,介电函数、折射率和吸收系数都受到影响,但到高能区后只有消光系数和吸收系数会被影响;反射率在整个能区都受影响,在中能区掺杂会使反射率提高,在低、高能区会减弱反射率;对损失函数的影响是掺杂浓度越高、损耗峰越小、峰值出现处能量越高.研究结果对N型掺杂半导体锗的光学应用具有一定的指导意义,可以根据上述结论有针对性地调节掺杂浓度和能量范围.  相似文献   

9.
本文利用基于密度泛函理论的第一性原理平面波赝势方法分别计算了本征及过渡金属掺杂单层MoS_2的晶格参数、电子结构和磁性性质.计算结果显示,过渡金属掺杂所引起的晶格畸变与杂质原子的共价半径有联系,但并不完全取决于共价半径的大小.分析电子结构可以看到,VIIB、VIII和IB族杂质中除Ag和Re外的掺杂体系都对外显示磁性,磁矩主要集中在掺杂的过渡金属原子上.掺杂体系的禁带区域都出现了数目不等的杂质能级,这些杂质能级主要由杂质的d、S的3p和Mo的4d轨道组成.  相似文献   

10.
Effects of the doping atom (O, Al, and (Al, O)) on structural and electronic properties of the monolayer WS2 have been studied by using first-principles calculations. Results show that the covalent character of W–S bonding has been enhanced after doping. Meanwhile, W–O, Al–S and W–S bonds of (Al, O) co-doped WS2 monolayer have higher covalent character compared with O-doped and Al-doped WS2 monolayer of this work. After doping with Al (or Al, O) atoms, Fermi level moves close to the valence band and the dopant atoms produce the defect energy levels, indicating that Al doped and (Al, O) co-doped WS2 monolayer both have p-type conductivity. O-doped and (Al, O) co-doped WS2 ultrathin films was prepared on Si substrates. Results of Raman spectra show the formation of the O-doped and (Al, O) co-doped WS2 films. Moreover, compared with the pure WS2, the approximate reduction of 0.43 eV and 0.46 eV for W 4f and S 2p in binding energy after (Al, O) co-doped shows that p-type doping of (Al, O) co-doped WS2 has been verified.  相似文献   

11.
《Physics letters. A》2020,384(26):126637
The electronic, magnetic properties and optical absorption of vanadium (V) doped rutile TiO2 have been studied by the generalized gradient approximation GGA and GGA+U (Hubbard coefficient) approach respectively. On the one hand, we consider the influence of vanadium with different doping concentration on the electronic structure. On the other hand, we study double V atoms doped TiO2, mainly study four V-doped TiO2 configurations, and find the magnetic ground states are ferromagnetic state. For the TiO2@V-V1, TiO2@V-V3 and TiO2@V-V4 configurations without O ion as bridge between V-V atoms, there will have a metastable state of antiferromagnetic configurations, while, for the TiO2@V-V2 configurations with an O ion as bridge between V-V atoms, due to the existence of superexchange between V-O-V, there will only exist the ground state of ferromagnetic state and there are no other metastable configurations. Furthermore, the optical properties of V-doped TiO2 are calculated. The results show that the V-doped TiO2 has strong infrared light absorption and visible light absorption.  相似文献   

12.
The electronic and structural properties of substitutional and doped phosphorene with B, N and Si were studied using first principles calculations based on density functional theory. Moreover, electronic and structural properties of functionalized phosphorene slowly increasing the concentration of doping was investigated. Phosphorene strongly binds with doped functionalization; B doped phosphorene is the most stable configuration studied. Si doped phosphorene maintains the semiconductor characteristic. B and N doped phosphorene present n-type and p-type semiconductors, respectively. Doped phosphorene with odd number of Si is a semiconductor material, doped phosphorene with an odd number of B has n-type semiconductor characteristic, and doped phosphorene with odd number of N atoms has a p-type semiconductor behaviour. Doped phosphorene with even number of Si has a metallic characteristic, while B and N doped phosphorene with even number present a semiconductor behaviour. This work reveals that phosphorene electronic properties could be changed by introducing the dopants on the system, and the properties are affected by the increasing number of dopants on phosphorene sheet.  相似文献   

13.
采用了基于密度泛函理论(DFT)的第一性原理平面波超软赝势方法,计算本征ZnO和不同W掺杂浓度下W:ZnO体系的电子结构和光学性质.计算结果表明:W掺杂可以提高ZnO的载流子浓度,从而改善ZnO的导电性.掺杂后,吸收光谱发生红移现象,且光学性质变化集中在低能量区,而高能量区的光学性质没有太大变化,计算结果与相关实验结果相符合.最后,结合电子结构定性分析了光学性质的变化.  相似文献   

14.
The electronic structure and optical properties of ZnO doped with La have been investigated using density functional theory based on first-principles ultrasoft pseudopotential method. The calculated results show that the La doping increases the bandgap of ZnO, in agreement with the experimental results; while the Fermi level shifts into the conduction band, revealing the so-called Burstein-Moss effect. In comparison to pure ZnO, a new peak appears in the imaginary part of dielectric function in the system doped with La and the optical absorption edge has been obviously changed. Moreover, the covalent property of Zn1−xLaxO is found to weaken with the increase of La concentration.  相似文献   

15.
金掺杂锯齿型石墨烯纳米带的电磁学特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
胡小会  许俊敏  孙立涛 《物理学报》2012,61(4):47106-047106
本文采用基于密度泛函理论的第一性原理计算了金原子填充锯齿型石墨烯纳米带 (ZGNRs)中双空位结构的电磁学特性. 计算结果表明: 边缘位置是金原子的最稳定掺杂位置, 杂质原子的引入导致掺杂边缘的磁性被抑制, 不过掺杂率足够大时, 掺杂边缘的磁性反而恢复了. 金掺杂纳米带的能带结构对掺杂率敏感: 随着掺杂率的增大, 掺杂纳米带分别表现半导体特性、半金属特性以及金属特性. 本文的计算表明金原子掺杂可以调制ZGNR的磁性以及能带特性, 为后续实验起指导作用, 有利于推动石墨烯材料在自旋电子学方面的应用.  相似文献   

16.
Utilizing first-principles calculations, the electronic structures, magnetic properties and band alignments of monolayer MoS2 doped by 3d transition metal atoms have been investigated. It is found that in V, Cr, Mn, Fe-doped monolayers, the nearest neighboring S atoms (SNN) are antiferromagnetically polarized with the doped atoms. While in Co, Ni, Cu, Zn-doped systems, the SNN are ferromagnetically coupled with the doped atoms. Moreover, the nearest neighboring Mo atoms also demonstrate spin polarization. Compared with pristine monolayer MoS2, little change is found for the band edges' positions in the doped systems. The Fermi level is located in the spin-polarized impurity bands, implying a half-metallic state. These results provide fundamental insights for doped monolayer MoS2 applying in spintronic, optoelectronic and electronic devices.  相似文献   

17.
碳掺杂ZnO的电子结构和光学性质   总被引:2,自引:1,他引:1       下载免费PDF全文
采用基于密度泛函理论框架下的第一性原理计算研究碳掺杂ZnO的电子结构和光学性质.计算结果表明:C原子替代O原子和C原子替代Zn原子两种掺杂体系的电子结构存在明显差异,这主要是由于C原子的电子分布及对周围原子的影响不同;碳掺杂ZnO光学性质的变化集中在低能量区,而高能量区的光学性质没有明显变化.结合电子结构定性解释了光学性质的变化. 关键词: ZnO 碳掺杂 电子结构 光学性质  相似文献   

18.
We introduce the synthesis, characterization and physical properties of gold (Au) doped multiwalled carbon nanotubes (MWCNTs) in different reaction media. In order to dope MWCNTs with Au nanoparticles (NPs), first functionalized carbon nanotubes (f-MWCNTs) were prepared. The reduction of gold (III) chloride trihydrate for synthesizing Au NPs in the presence of f-MWCNTs was performed by using sodium citrate as a reducing agent. The produced nanocomposites were characterized using FTIR, XRD and TEM analyses to explore their chemical structures and morphologies. All of the samples have been characterized by TGA and resultantly, the composite made into ethylene glycol exhibited the most concentration of Au NPs into the composite network. This work probes the optical characteristics, such as UV–vis absorption, and optical band gap. Hall effect analyses declared some pleasing variations in electrical characteristics. Remarkably, the n-type doping of Au NPs in the p-type MWCNTs’ network led to a downshift of the Fermi level. This process increased the doped samples electrical conductivity. The results indicated that modification of MWCNTs with Au NPs has generally an important role in decreasing the band gap and increasing the electrical activity of MWCNTs. Our research outcomes provide a new vision into how different reaction media could affect the characteristics of MWCNT/Au nanocomposites. We discovered that ethylene glycol could be considered as a perfect reaction medium for preparation of high-quality doped CNTs with excellent physical properties. Our effort opens up the door to far more investigations on the role of the reaction medium in products’ characteristics.  相似文献   

19.
Through the first principle calculation, electronic properties of monolayer MoS2 doped with single, double, triple and tetra-atoms of P, Cl, O, Se at the surface S site are discussed. Among the substitutional dopant, our calculation results show that when P atoms are doped on a monolayer MoS2, a shift in the Fermi energy into the valence band is observed, making the system p-type. Meanwhile, band gap gradually decreases as increasing the number of P atoms. On the contrary, Cl is identified as a suitable n-type dopant. It is observed that Cl for initial three dopant behaved as magnetic and afterwards returned to non-magnetic behavior. The band gap of the Cl doped system is also dwindling gradually. Finally, O and Se doped systems have little effect on electronic properties near band gap. Such doping method at the S site, and the TDOS and PDOSs of each doping system provide a detailed of understanding toward working mechanism of the doped and the intrinsic semiconductors. This doping model opens up an avenue for further clarification in the doping systems as well as other dopant using this method.  相似文献   

20.
The electronic structures and optical properties of In doped GaN were calculated with different doping concentration, from first-principles using density function theory with the plane-wave ultrasoft pseudopotential method. The influence of In doping on the volume, interactions among atoms, density of states, electron density difference, and optical properties of GaN was analyzed. The results show that the interactions among atoms are reduced, band gap decreases, and absorption spectra have red shift along with the increase of In doping concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号