首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The maximum superconducting transition temperatures,T c , of noncrystalline (Ti, Zr and Hf)-(3d metal) alloys are reported. The alloys have been produced by low temperature implantation of the 3d metals. The systematic behavior ofT c as a function of 3d element content is discussed in comparison with metallic glasses and vapor-quenched films. A correlation between the recently observedd-band splitting in metallic glasses and superconducting behavior is pointed out.  相似文献   

2.
张辉  张国英  杨爽  吴迪  戚克振 《物理学报》2008,57(12):7822-7826
运用实空间递归方法研究了添加元素Nb,Ta,Y,La对Zr基非晶合金的非晶形成能力和耐腐蚀性能的影响.用计算机编程构造了Zr基非晶中初始晶化相Zr2Ni的原子结构模型,用Zr2Ni中的二十面体原子团簇模拟非晶中的二十面体团簇.计算了替代二十面体中心或顶角位置原子前后Ni,Zr及合金元素的局域态密度、团簇中心Ni与近邻Zr原子及Ni与替代元素Nb,Ta,Y,La间的键级积分,还计算了合金元素替代前后团簇的费米能级.局域态密度计算结果表明:合金元素Cu占据二十面体团 关键词: 电子结构 Zr基大块非晶 非晶形成能力 耐蚀性  相似文献   

3.
刘增辉  尚家香 《中国物理 B》2012,21(1):16202-016202
A first-principles density functional approach is used to study the electronic and the elastic properties of Nb15X(X = Ti, Zr, Hf, V, Ta, Cr, Mo, and W) alloys. The elastic constants c11 and c12, the shear modulus C', and the elastic modulus E〈100〉 are found to exhibit similar tendencies, each as a function of valence electron number per atom (EPA), while c44 seems unclear. Both c11 and c12 of Nb15X alloys increase monotonically with the increase of EPA. The C' and E〈100〉 also show similar tendencies. The elastic constants (except c44) increase slightly when alloying with neighbours of a higher d-transition series. Our results are supported by the bonding density distribution. When solute atoms change from Ti(Zr, Hf) to V(Ta) then to Cr(Mo, W), the bonding electron density between the central solute atom and its first neighbouring Nb atoms is increased and becomes more anisotropic, which indicates the strong interaction and thus enhances the elastic properties of Nb-Cr(Mo, W) alloys. Under uniaxial 〈100〉 tensile loading, alloyed elements with less (more) valence electrons decrease (increase) the ideal tensile strength.  相似文献   

4.
Amorphous TiFe, ZrFe and HfFe alloys prepared by low temperature implantation of about 10 at% Fe were found to have superconducting transition temperatures, Tc, enhanced above the values of the pure crystalline elements. In addition, Tc = 2.6 K for TiFe is about 1 K higher than Tc of the equivalent amorphous TiCu alloy. A correlation between the recently observed dband behavior of similar binary transition metal alloys and the forming ability is extended to (Ti,Zr,Hf)-Fe alloys to explain their superconducting properties.  相似文献   

5.
We show that mechanical properties (stiffness and hardness) of Zr–Ni, Cu amorphous alloys increase linearly with Ni, Cu content over a wide composition range (22?≤?x Ni,Cu?≤?65 at%). This correlates with the observed increase in the Debye temperatures and densities with x and shows that the strength of interatomic bonding increases with x in these alloys. Accordingly, the thermal stability (e.g. the crystallization and glass transition temperatures) of these alloys also increases with x. Since the electronic density of states at the Fermi level decreases linearly with x within the same x-range, a very simple relationship exists between the electronic structure and mechanical and thermal properties. We also deduce the mechanical properties of hypothetic amorphous Zr and briefly discuss the possibility of its preparation.  相似文献   

6.
The effects of minor addition of Cu on glass-forming ability (GFA), thermal stability and magnetic properties of (Fe0.8P0.09C0.09B0.02)100? x Cu x (x?=?0–1) alloys were investigated. The introduction of Cu slightly increases the GFA and efficiently improves the primary crystallization of α-Fe nanoparticles. The alloy with 0.3% Cu addition shows the best GFA and the fully glassy rods can be produced up to 2?mm in diameter. The saturation magnetization of the glassy sample with 0.7% Cu addition can be enhanced from 1.44 to 1.60?T after proper heat treatment due to the precipitation of α-Fe nanoparticles in the glassy matrix. The combination of large GFA and high saturation magnetization as well as low cost makes the FePCBCu alloys as a kind of promising soft magnetic materials for industrial applications.  相似文献   

7.
ABSTRACT

The thermodynamics of hydride formation is one of the most important properties of the metal-hydrogen system, and states its potential for further uptake. For this reason, much research is focused on the use of first principle calculations as a predictive tool in the study of hydride stability. In this paper, First-principles density functional calculations were performed to predict the effect of co-substitution in NiTiH, Ti by Mg and Zr (x?=?0.125, 0.25 and 0.375), as well as Ni by Cu and Cr (y?=?0.125). Structural, thermodynamic stability and electronic properties were investigated. The formation enthalpy when Ti is substituted either by Mg or Zr with respect to their content is calculated and compared to the host NiTiH; it is found that the hydride stability decreases as Mg content increases while it increases when Zr content increases. The substitution of Ni by Cu destabilises the hydride while the stability of the hydride is enhanced when Ni is substituted by Cr. The simultaneous substitution of Ti by Mg (x?=?0.375) and Ni by Cu (y?=?0.125), leads to considerable destabilisation and an increase in cell volume of the hydride. The corresponding Ni0.875Cu0.125Ti0.625Mg0.375 compound is identified with optimum characteristics among the considered compositions, thereby can be considered as potential material for hydrogen storage.  相似文献   

8.
Based on the same method by us which describes the solid solubilities of the binary nontransition metal based alloys, the solid solubilities at room temperature in 1380 binary alloys which are based on the 23 transition metals (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Ru, Rh, Pd, La, Hf, Ta, W, Re, Os, Ir and Pt) of the fourth, fifth and sixth long periods have been studied in this paper. It has been found that the soluble elements can be separated from the insoluble elements by an ellipse equation (x−m) 2/c 2+(y−n) 2/d 2 = 1, by using a criterion of 0.5at% solubility at room temperature for every host element. The results show that the overall reliability for the ellipse equation is up to 90% for the 1380 alloys, which indicates the theoretical results are very good in agreement with the experimental data. The parameters m, n, c and d in the ellipse equation can be explained by the appropriate parameters for every host metal.  相似文献   

9.
Total and partial densities of states of the constituent atoms of ZrTiO4 and HfTiO4 titanates have been calculated using a self-consistent cluster method as incorporated in the FEFF8 code. The calculations reveal the similarity of the electronic structure of both titanates and indicate that the valence band of the compounds under consideration is dominated by contributions of O 2p states. These states contribute throughout the whole valence-band region; however their maximum contributions occur in the upper portion of the band. Other significant contributors in the valence-band region are Ti 3d and Zr 4d states in ZrTiO4 and Ti 3d and Hf 5d states in HfTiO4. All the above d-like states contribute throughout the whole valence-band region of the titanates; however maximum contributions of the Ti 3d states occur in the upper portion, whilst those of the Zr 4d (Hf 5d) states are in the central portions of the valence band. The FEFF8 calculations render that the bottom of the conduction band of ZrTiO4 and HfTiO4 is dominated by contributions of Ti 3d? states, with also smaller contributions of Zr 4d?/Hf 5d? and O 2p? states. To verify the above FEFF8 data, the X-ray emission bands, representing the energy distributions of mainly O 2p, Ti 3d and Zr 4d states, were measured and compared on a common energy scale. These experimental data are found to be in agreement with the theoretical FEFF8 results for the electronic structure of ZrTiO4 and HfTiO4 titanates. Additionally, X-ray photoelectron valence-band and core-level spectra were recorded for the constituent atoms of the titanates under study.  相似文献   

10.
The new class of intermetallic compounds RNiSn(R=Ti,Zr,Hf) may be characterised by the presence of an ordered sublattice of Ni atom vacancies in comparison with normal metals RNi2Sn with no Ni vacancies. We report unusual transport and optical properties of the RNiSn system. The electrical resistivity of RNiSn is very high (3<p<100) mOhm*cm; the temperature coefficient of resistivity (TCR) is negative and strongly dependent on the annealing conditions. For some samples ZrNiSn and for a single crystal of TiNiSn the resistivity can be described by the Mott's law at temperatures 0.1<T<20 K. A phase transition nearT=100 K without change of crystal structure was deduced from Hall effect data and the temperature dependence of the lattice constant. Preliminary data on transport phenomena in RPtSn and RPdSn(R=Ti,Zr,Hf) compounds are also reported. The unusual properties of RNiSn system might be related to a gap of the electron spectrum near the Fermi energy.  相似文献   

11.
王培吉  考红  张昌文  于峰  周忠祥 《中国物理 B》2009,18(10):4490-4496
The electronic structures and magnetic properties of SmCo7 xMx (M=Ti, Si, Zr, Hf, Cu, B, Ag, Ga, Mn) compounds are investigated by using a spin-polarized MS-X.α method. The results show that the long-range ferromagnetic order is determined by a stronger 3d-5d interaction, rather than the traditional RKKY interaction, and the effects of doping element M on 3d-5d coupling are negligible in Sm-Co-based compounds. The nonmagnetic dopant Si atoms have a larger effect on the moments of 2e site although they preferably occupy the Co 3g sites, which results in the stronger uniaxial anisotropy of this compound. Analysis of the formation energies indicates that 5d-element doped compounds are more stable than other dopants, and furthermore, they have a higher Curie temperature above room temperature, which will be in favor of their potential application as high-temperature permanent magnets.  相似文献   

12.
A. Bouhemadou 《哲学杂志》2013,93(12):1623-1638
The structural, elastic, electronic and thermal properties of M2SbP (M = Ti, Zr and Hf) were studied by means of a pseudo-potential plane-wave method based on the density functional theory within both the local density approximation and the generalised gradient approximation. The optimised zero-pressure geometrical parameters, i.e. the two unit cell lengths (a, c) and the internal coordinate (z), were in good agreement with available experimental and theoretical data. The effect of high pressure, up to 20 GPa, on the lattice constants shows that the contractions along the a-axis were higher than along c-axis. The anisotropic independent elastic constants were calculated using the static finite strain technique. Numerical estimations of the bulk modulus, shear modulus, Young's modulus, Poisson's ratio, average sound velocity and Debye temperature for ideal polycrystalline M2SbP aggregates were performed in the framework of the Voigt–Reuss–Hill approximation. The calculated band structures show that all studied materials are electrical conductors. Analysis of the atomic site projected densities showed that the bonding is of covalent–ionic nature with the presence of metallic character. The density of states at the Fermi level is dictated by the transition metal d–d bands; the Sb element has little effect. Thermal effects on some macroscopic properties of M2SbP were predicted using the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variations of the volume expansion coefficient, heat capacity and Debye temperature with pressure and temperature in the ranges 0–50 GPa and 0–2000 K were obtained successfully.  相似文献   

13.
14.
This study investigated the effects of adding Zr, as a base alloying element, besides Ni and Mn in different amounts and combinations on the melting and solidification characteristics of 354-type Al-Si-Cu-Mg alloys. Differential scanning calorimetry (DSC) was used to characterise the sequence of reactions occurring during the heating and/or cooling cycles; whereas scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) techniques were used to observe and identify existing intermetallic phases. Nickel proved to have a retarding effect on the kinetics of precipitation of the α-Al network and the eutectic Al-Si structure. Also, the presence of Ni consumed a considerable amount of Cu to form Al-Cu-Ni particles instead of Al2Cu particles. Results revealed that solution treatment at 495°C for 5?h was sufficient to dissolve a large amount of Al2Cu particles in the α-Al matrix, which is mandatory for a successful aging treatment of the alloys studied. Additions of these transition elements produced new intermetallic phases such as (Al,Si)3(Ti,Zr), (Al,Si)3Zr, Al9FeNi, Al3Ni, Al3CuNi, and Al9FeSi3Ni4Zr, in addition to the other phases, namely α-Al, eutectic silicon, Al2Cu, Mg2Si, Q-phase (Al5Cu2Mg8Si6), commonly observed in 354-type alloys, and Fe-based intermetallic phases including β-Al5FeSi, α-Al15(Fe, Mn)3Si2, and π-Al8FeMg3Si6. Superheating the melt at 800°C instead of 750°C had an advantageous effect in that Al3Zr particles originating from the Al-15%Zr master alloy were dissolved and hence coarse Zr-containing particles were barely spotted in the microstructures examined.  相似文献   

15.
The effects of the addition of small amounts of Zr and Hf (0.5–3%) on the atomic structure of Al88Y7Fe5 metallic glass were examined from extended X-ray absorption fine structure (EXAFS) experiments to better understand the influence of these microadditions on the glass-forming ability of this alloy. Measurements at the Zr K and Hf LIII absorption edges allowed the local structures around Zr and Hf atoms to be determined. The same Al environment was found for the different concentrations, consisting of a small cluster extending up to 4.5 Å around the Zr atoms and up to 6 Å around the Hf ones. Although the clustering effect is smaller in the Zr neighbourhood, a drastic shortening of the nearest Zr–Al distance is shown, providing evidence for some covalent character to the bonding, in line with the increased glass-forming ability found in the alloys made with the Zr microaddition.  相似文献   

16.
The spin polarized electronic band structures, density of states (DOS) and magnetic properties of Mn2WSn, Fe2YSn (Y=Ti, V), Co2YSn (Y=Ti, Zr, Hf, V, Mn) and Ni2YSn (Y=Ti, Zr, Hf, V, Mn) huesler compounds are reported. The calculations are performed by using full-potential linearized augmented plane wave method (FP-LAPW) within density functional theory. The magnetic trend in these compounds is studied using values of magnetic moments, exchange interaction and calculated band gap. The results reveal that Mn2WSn and Ni2VSn show 100% spin polarization, Co2YSn (Y=Ti, Zr, Hf, Mn), Fe2YSn (Y=Ti, V), and Ni2MnSn exhibit metallic nature and Ni2YSn (Y=Ti, Zr, Hf) and Co2VSn show semi-conducting behavior.  相似文献   

17.
Using First-principle calculations, we have studied the structural, electronic and elastic properties of M2TlC, with M = Ti, Zr and Hf. Geometrical optimization of the unit cell is in good agreement with the available experimental data. The effect of high pressures, up to 20 GPa, on the lattice constants shows that the contractions are higher along the c-axis than along the a axis. We have observed a quadratic dependence of the lattice parameters versus the applied pressure. The band structures show that all three materials are electrical conductors. The analysis of the site and momentum projected densities shows that bonding is due to M d-C p and M d-Tl p hybridizations. The M d-C p bonds are lower in energy and stiffer than M d-Tl p bonds. The elastic constants are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young’s modulus and Poisson’s ratio for ideal polycrystalline M2TlC aggregates. We estimated the Debye temperature of M2TlC from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of Ti2TlC, Zr2TlC, and Hf2TlC compounds that requires experimental confirmation.   相似文献   

18.
Co/Ti and Co/Zr multilayers with wedge-shaped and constant-thickness Ti and Zr sublayers were prepared using UHV DC/RF magnetron sputtering. Results showed that the Co sublayers are ferromagnetically coupled up to Ti and Zr spacer thickness of about 1.9 and 2.4 nm, respectively. Furthermore, a weak antiferromagnetic coupling of the Co sublayers was observed for a Ti (Zr) thickness range between 1.9 and 2.7 nm (2.4 and 3.2 nm). The Co sublayers are very weakly exchange coupled or decoupled for d Ti 2.7 nm and d Zr 3.2 nm. The rapid decrease of the interlayer exchange coupling could be explained by its strong damping due to formation of a non-magnetic quasi-amorphous Ti-Co and Zr-Co alloy layer at the interfaces.  相似文献   

19.
We have investigated the plastic deformation properties of single-phase Zr–Nb–Ti–Ta–Hf high-entropy alloys from room temperature (RT) up to 300 °C. Uniaxial deformation tests at a constant strain rate of 10?4?s?1 were performed, including incremental tests such as stress relaxations, strain-rate changes, and temperature changes in order to determine the thermodynamic activation parameters of the deformation process. The microstructure of deformed samples was characterized by transmission electron microscopy. The strength of the investigated Zr–Nb–Ti–Ta–Hf phase is not as high as the values frequently reported for high-entropy alloys in other systems. At RT we measure a flow stress of about 850 °C. We find an activation enthalpy of about 1 eV and a stress dependent activation volume between 0.5 and 2 nm3. The measurement of the activation parameters at higher temperatures is affected by structural changes evolving in the material during plastic deformation.  相似文献   

20.
The effects of small substitutions of Si and Y on the glass-forming ability of a Cu55Hf25Ti20 glassy alloy are reported and discussed. Fully glassy rods with diameters up to 7 and 6.5 mm were produced for Cu54.5Hf25Ti20Si0.5 and Cu55? x Hf25Ti20Y0.3 alloys, respectively. The addition of Si enlarged ΔTx (= Tx ? T g, where T g and Tx are crystallisation and glass transition temperatures, respectively) considerably, from 25 to 53 K for the Cu54Hf25Ti20Si1 alloy. However, the results showed that the parameters obtained from thermal analysis, such as T rg , ΔTx and γ[= Tx /(T g + T l)] are not reliably correlated with the glass-forming ability (GFA), at least for these bulk glass-forming alloys. The scavenging effects of the Y and Si, in particular the possibility of Y reducing the oxides, could be responsible for enhancing the GFA. It is proposed that the effectiveness of small additions of Si in enhancing the GFA may be the result of the possible formation of HfSiO4 having a very large negative enthalpy of formation and, as a strong network former, it would form glassy particles which would be ineffective as nucleating agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号