首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of electrochemical oxidation of catechol (1a), 3-methylcatechol (1b) and 3-methoxycatechol (1c) in the presence of benzenesulfinic acid (3) as a nucleophile has been studied in an aqueous solution using cyclic voltammetry and controlled-potential coulometry. The results indicate that the catechol derivatives (1a1c) are converted to sulfone derivatives (4a4c) through Michael addition of benzenesulfinate to anodically generated o-quinones (2a2c). The electrochemical synthesis of 4a4c has been successfully performed in an undivided cell in good yields and purity.  相似文献   

2.
The C/Si/Ge-analogous compounds rac-Ph(c-C5H9)El(CH2OH)CH2CH2NR2 (NR2=piperidino; El=C, rac-3a; El=Si, rac-3b; El=Ge, rac-3c) and (c-C5H9)2El(CH2OH)CH2CH2NR2 (NR2=piperidino; El=C, 5a; El=Si, 5b; El=Ge, 5c) were prepared in multi-step syntheses. The (R)- and (S)-enantiomers of 3ac were obtained by resolution of the respective racemates using the antipodes of O,O′-dibenzoyltartaric acid (resolution of rac-3a), O,O′-di-p-toluoyltartaric acid (resolution of rac-3b), or 1,1′-binaphthyl-2,2′-diyl hydrogen phosphate (resolution of rac-3c). The enantiomeric purities of (R)-3ac and (S)-3ac were ≥98% ee (determined by 1H-NMR spectroscopy using a chiral solvating agent). Reaction of rac-3ac, (R)-3ac, (S)-3ac, and 5ac with methyl iodide gave the corresponding methylammonium iodides rac-4ac, (R)-4ac, (S)-4ac, and 6ac (3ac4ac; 5ac6ac). The absolute configuration of (S)-3a was determined by a single-crystal X-ray diffraction analysis of its (R,R)-O,O′-dibenzoyltartrate. The absolute configurations of the silicon analog (R)-4b and germanium analog (R)-4c were also determined by single-crystal X-ray diffraction. The chiroptical properties of the (R)- and (S)-enantiomers of 3ac, 3ac·HCl, and 4ac were studied by ORD measurements. In addition, the C/Si/Ge analogs (R)-3ac, (S)-3ac, (R)-4ac, (S)-4ac, 5ac, and 6ac were studied for their affinities at recombinant human muscarinic M1, M2, M3, M4, and M5 receptors stably expressed in CHO-K1 cells (radioligand binding experiments with [3H]N-methylscopolamine as the radioligand). For reasons of comparison, the known C/Si/Ge analogs Ph2El(CH2OH)CH2CH2NR2 (NR2=piperidino; El=C, 7a; El=Si, 7b; El=Ge, 7c) and the corresponding methylammonium iodides 8ac were included in these studies. According to these experiments, all the C/Si/Ge analogs behaved as simple competitive antagonists at M1–M5 receptors. The receptor subtype affinities of the individual carbon, silicon, and germanium analogs 3a–8a, 3b–8b, and 3c–8c were similar, indicating a strongly pronounced C/Si/Ge bioisosterism. The (R)-enantiomers (eutomers) of 3ac and 4ac exhibited higher affinities (up to 22.4 fold) for M1–M5 receptors than their corresponding (S)-antipodes (distomers), the stereoselectivity ratios being higher at M1, M3, M4, and M5 than at M2 receptors, and higher for the methylammonium compounds (4ac) than for the amines (3ac). With a few exceptions, compounds 5ac, 6ac, 7ac, and 8ac displayed lower affinities for M1–M5 receptors than the related (R)-enantiomers of 3ac and 4ac. The stereoselective interaction of the enantiomers of 3ac and 4ac with M1–M5 receptors is best explained in terms of opposite binding of the phenyl and cyclopentyl ring of the (R)- and (S)-enantiomers. The highest receptor subtype selectivity was observed for the germanium compound (R)-4c at M1/M2 receptors (12.9-fold).  相似文献   

3.
Electrochemical oxidation of catechol (1d), 3-methylcatechol (1a), 3-methoxycatechol (1b) and 2,3-dihydroxybenzoic acid (1c) in the presence of 4-hydroxycoumarin as nucleophile in aqueous solution has been studied using cyclic voltammetry and controlled-potential coulometry. The results indicate that (1a–1d) participating in a 1,4 (Michael) addition reaction convert to coumestan derivatives (5a–5d). The electrochemical synthesis of 5a–5d has been successfully performed in an undivided cell in good yield and purity.  相似文献   

4.
Lithiation of O-functionalized alkyl phenyl sulfides PhSCH2CH2CH2OR (R = Me, 1a; i-Pr, 1b; t-Bu, 1c; CPh3, 1d) with n-BuLi/tmeda in n-pentane resulted in the formation of α- and ortho-lithiated compounds [Li{CH(SPh)CH2CH2OR}(tmeda)] (α-2ad) and [Li{o-C6H4SCH2CH2CH2OR)(tmeda)] (o-2ad), respectively, which has been proved by subsequent reaction with n-Bu3SnCl yielding the requisite stannylated γ-OR-functionalized propyl phenyl sulfides n-Bu3SnCH(SPh)CH2CH2OR (α-3ad) and n-Bu3Sn(o-C6H4SCH2CH2CH2OR) (o-3ad). The α/ortho ratios were found to be dependent on the sterical demand of the substituent R. Stannylated alkyl phenyl sulfides α-3ac were found to react with n-BuLi/tmeda and n-BuLi yielding the pure α-lithiated compounds α-2ac and [Li{CH(SPh)CH2CH2OR}] (α-4ab), respectively, as white to yellowish powders. Single-crystal X-ray diffraction analysis of [Li{CH(SPh)CH2CH2Ot-Bu}(tmeda)] (α-2c) exhibited a distorted tetrahedral coordination of lithium having a chelating tmeda ligand and a C,O coordinated organyl ligand. Thus, α-2c is a typical organolithium inner complex.Lithiation of O-functionalized alkyl phenyl sulfones PhSO2CH2CH2CH2OR (R = Me, 5a; i-Pr, 5b; CPh3, 5c) with n-BuLi resulted in the exclusive formation of the α-lithiated products Li[CH(SO2Ph)CH2CH2OR] (6ac) that were found to react with n-Bu3SnCl yielding the requisite α-stannylated compounds n-Bu3SnCH(SO2Ph)CH2CH2OR (7ac). The identities of all lithium and tin compounds have been unambiguously proved by NMR spectroscopy (1H, 13C, 119Sn).  相似文献   

5.
From the reaction of 6-(p-methoxyphenyl) fulvene (1a), 6-(p-N,N-dimethylaminophenyl) fulvene (1b) and 6-(3,4-dimethoxyphenyl) fulvene (1c) with LiBEt3H, lithiated cyclopentadienide intermediates (2ac) were synthesised. These intermediates were then transmetallated to tin with SnCl4 to yield tetra-substituted bis(cyclopentadienyl)tin dichloride complexes (3ac). Further reaction with tin tetrachloride yielded the benzyl-substituted derivatives bis-[(p-methoxybenzyl)cyclopentadienyl] tin(IV) dichloride (4a), bis-[(p-N,N-dimethylaminobenzyl)cyclopentadienyl] tin(IV) dichloride (4b), and bis-[(3,4-dimethoxyphenyl)cyclopentadienyl] tin(IV) dichloride (4c). Preliminary antibacterial tests were carried out using the Kirby–Bauer disk-diffusion method, in which 4ac showed little to no activity against the Gram-negative bacterium Escherichia coli, but medium activity against Gram-positive bacteria (MRSA, MSSA). In addition, the organotin complexes had their cytotoxicity investigated through preliminary in vitro testing on the LLC-PK (pig kidney epithelial) cell line in order to determine their IC50 values. Compound 4c showed no cytotoxic activity, while 4a and 4b were found to have IC50 values of 15 and 205 μM, respectively.  相似文献   

6.
The reaction of dimeric rhodium precursor [Rh(CO)2Cl]2 with two molar equivalent of 1,1,1-tris(diphenylphosphinomethyl)ethane trichalcogenide ligands, [CH3C(CH2P(X)Ph2)3](L), where X = O(a), S(b) and Se(c) affords the complexes of the type [Rh(CO)2Cl(L)] (1a–1c). The complexes 1a–1c have been characterized by elemental analyses, mass spectrometry, IR and NMR (1H, 31P and 13C) spectroscopy and the ligands a–c are structurally determined by single crystal X-ray diffraction. 1a–1c undergo oxidative addition (OA) reactions with different electrophiles such as CH3I, C2H5I and C6H5CH2Cl to give Rh(III) complexes of the types [Rh(CO)(COR)ClXL] {R = –CH3 (2a–2c), –C2H5 (3a–3c); X = I and R = –CH2C6H5 (4a–4c); X = Cl}. Kinetic data for the reaction of a–c with CH3I indicate a first-order reaction. The catalytic activity of 1a–1c for the carbonylation of methanol to acetic acid and its ester is evaluated and a higher turn over number (TON = 1564–1723) is obtained compared to that of the well-known commercial species [Rh(CO)2I2] (TON = 1000) under the reaction conditions: temperature 130 ± 2 °C, pressure 30 ± 2 bar and time 1 h.  相似文献   

7.
This paper presents a study of enantioselective catalytic oxidation of a variety of differently substituted, cyclic (E) and acyclic (Z)-enol phosphates. The asymmetric oxidation of acyclic (Z)-enol phosphates containing alkoxy substituents in the phosphate group 2a, c, eg, i, and j and Z-configured enol phosphates containing aryloxy substituents in the phosphate group 2b, d, and h afforded optically active α-hydroxy ketones 4aj of opposite configuration with good to high enantioselectivity. The influence of electronic and steric effects of the enol phosphate substituents on the stereoselectivity of oxidation was studied.  相似文献   

8.
Treatment of the η1-acetylide complex [(η5-C5H5)(CO)(NO)W---CC---C(CH3)3]Li (4) with 1,2-diiodoethane in THF at −78 °C, followed by the addition of Li---CC---R [R=C(CH3)3, C6H5, Si(CH3)3, 6a6c] or n-C4H9Li and protonation with H2O, afforded the corresponding oxametallacyclopentadienyl complexes (η5-C5H5)W(I)(NO)[η2-O=C(CC---R)CH=CC(CH3)3] (7a7c), 8c and (η5-C5H5)W(I)(NO)[η2-O=C(n-C4H9)CH=CC(CH3)3] (9). The formation of these metallafuran derivatives is rationalized by the electrophilic attack of 1,2-diiodoethane onto the metal center of 4 to form first the neutral complex [(η5-C5H5)(I)(CO)(NO)W---CC---C(CH3)3] (5). Subsequent nucleophilic addition of Li---CC---R 6a6c or n-C4H9Li and a reductive elimination step followed by protonation leads to the products 7a7c and 9. One reaction intermediate could be trapped with CF3SO3CH3 and characterized by a crystal structure analysis. The identity of another intermediate was established by infrared spectroscopic data. The oxametallacyclopentadienyl complex 10 forms in the presence of excess 1,2-diiodoethane through an alternative pathway and crystallizes as a clathrate containing iodine.  相似文献   

9.
Crystals containing three kinds of molecules 1-piperidiniumacetate (II), 1-piperidiniumacetic acid (III) and 2,4,6-trinitrophenolate (picrate, TNP), belong to the monoclinic system, space group P21/c and Z=4, a=12.831(3), b=26.093(5), c=7.157(1) Å, β=101.18(3)°, R=0.0758. The zwitterion molecule (II) is a double acceptor of protons from two molecules of 1-piperidiniumacetic acid (III) (N–HO, 2.735(5) Å and O–HO, 2.472(5) Å), and a donor of proton to the picrate molecule (N–HO, 2.747(5) Å). These three molecules, which have three donor centers and several acceptor groups, form hydrogen-bonded chains parallel to the z axis. The oxygen atoms inactive in these hydrogen bonds, are engaged in the C–HO short contacts, which can be treated as weak hydrogen bonds, and join the chains into a three-dimensional network. The presence of protonated 1-piperidineacetic acid (III) and its zwitterion (II) in the crystal has been confirmed by 13C CP MAS NMR and solid state FTIR spectra.  相似文献   

10.
Racemic and enantiopure benzofuranmethanamines 5ac have been reacted with N-Boc-3-(4-cyanophenyl)oxaziridine to give N-Boc-hydrazines 7ac, which have in turn been transformed by deprotection and cyclisation into triazoles 4ac, potent antiaromatase agents, in good overall yield and with high enantiomeric excess.  相似文献   

11.
Summary The synthesis of some 5-cyano-4-hydroxy-2-pyridone derivatives (3 a–c) by condensation of 3-aminocrotononitrile (1) with substituted diethylmalonates (2 a–c) is described. Reaction of3 a with phosphorus oxychloride yields 4,6-dichloro-3-pyridinecarbonitrile (7 a), which reacts with various nucleophiles to give substituted 3-pyridinecarbonitriles (8–10).See ref. [1]  相似文献   

12.
The complex [Rh(CO)2Cl]2 reacts with two molar equivalent of pyridine carboxylic acids ligands Py-2-COOH(a), Py-3-COOH(b) and Py-4-COOH(c) to yield rhodium(I) dicarbonyl chelate complex [Rh(CO)2(L/)](1a) {L/ = η2-(N,O) coordinated Py-2-COO(a/)} and non-chelate complexes [Rh(CO)2ClL//](1b,c) {L// = η1-(N) coordinated Py-3-COOH(b), Py-4-COOH(c)}. The complexes 1 undergo oxidative addition (OA) reactions with different electrophiles such as CH3I, C2H5I, C6H5CH2Cl and I2 to give penta coordinated Rh(III) complexes of the types [Rh(CO)(CORn)XL/], {n = 1,2,3; R1 = CH3(2a); R2 = C2H5(3a); X = I and R3 = CH2C6H5 (4a); X = Cl}, [Rh(CO)I2L/](5a), [Rh(CO)(CORn)ClXL//] {R1 = CH3(6b,c); R2 = C2H5(7b,c); X = I and R3 = CH2C6H5 (8b,c); X = Cl} and [Rh(CO)ClI2L//](9b,c). The complexes have been characterized by elemental analysis, IR and 1H NMR spectroscopy. Kinetic data for the reaction of 1a–b with CH3I indicate a first order reaction. The catalytic activity of 1a–c for the carbonylation of methanol to acetic acid and its ester is evaluated and a higher turn over number (TON = 810–1094) is obtained compared with that of the well-known commercial species [Rh(CO)2I2] (TON = 653) at mild reaction conditions (temperature 130 ± 5 °C, pressure 35 ± 5 bar).  相似文献   

13.
The interaction of rhenium hydrides ReHX(CO)(NO)(PR3)2 1 (X=H, R=Me (a), Et (b), iPr (c); X=Cl, R=Me (d)) with a series of proton donors (indole, phenols, fluorinated alcohols, trifluoroacetic acid) was studied by variable temperature IR spectroscopy. The conditions governing the hydrogen bonding ReHHX in solution and in the solid state (IR, X-ray) were elucidated. Spectroscopic and thermodynamic characteristics (−ΔH=2.3–6.1 kcal mol−1) of these hydrogen bonded complexes were obtained. IR spectral evidence that hydrogen bonding with hydride atom precedes proton transfer and the dihydrogen complex formation was found. Hydrogen bonded complex of ReH2(CO)(NO)(PMe3)2 with indole (2a–indole) and organyloxy-complex ReH(OC6H4NO2)(CO)(NO)(PMe3)2 (5a) were characterized by single-crystal X-ray diffraction. A short NHHRe (1.79(5) Å) distance was found in the 2a–indole complex, where the indole molecule lies in the plane of the Re(NO)(CO) fragment (with dihedral angle between the planes 0.01°).  相似文献   

14.
8-G-1-(p-YC6H4CCSe)C10H6 [2 (G = Cl) and 3 (G = Br): Y = H (a), OMe (b), Me (c), F (d), Cl (e), CN (f) and NO2 (g)] have been prepared and the NMR spectra measured, in addition to 1 (G = H). Structures have been determined by X-ray crystallographic analysis for 2b, 2e and 2g, which are all type B (B), where the Se–Csp bond is placed in the naphthyl plane in B. The type is classified as A if the Se–Csp bond is perpendicular to the naphthyl plane. Structures around the p-YC6H4 (Ar) group are pd (perpendicular) for Y = OMe (2b) and Cl (2e) and pl (planar) for Y = NO2 (2g), where the Se–CNap bond is placed in the aryl plane in pl and perpendicular to the plane in pd. The 1b (A: pd) structure changes dramatically on going to 2b (B: pd) with G = Cl at the 8-position. The effect is called the G-dependence in 2. The G-dependence arises from the energy lowering effect of the np(Cl)σ*(Se–Csp) 3c–4e interaction. Structures are both (B: pd) for 1e and 2e and both (B: pl) for 1g and 2g. One may realize that the structures are unchanged by G = Cl in place of G = H for Y = Cl and NO2 at a first glance. However, the B structures in 2e and 2g must be much more stabilized by the G-dependence of the np(Cl)σ*(Se–Csp) 3c–4e interaction or the GSe–Csp–Csp–Csp2 5c–6e type interaction. The structures of 2 and 3 are examined in solution based on the NMR parameters. The results show that 2 and 3 behave very similarly to each other and the structures are predominantly B, with some equilibrium between pd and pl around the aryl groups in solution. Quantum chemical calculations support the observations.  相似文献   

15.
Six novel 2' - hydroxy - 1',3' - xylyl crown ethers (8ae and 13)1 have been synthesized utilizing the allyl group to protect the OH function during the cyclization reaction. The macrocycles 6a-e were formed in yields of 26 to 52%, by intermolecular reaction of 4 - chloro - 2,6 - bis(bromomethyl) - 1 - (2 - propenyloxy)benzene (5) with polyethylene glycols; 6a was also obtained by an intramolecular cyclization reaction of monotosylate 14.A 30-membered ring with a 2' - hydroxy - 1',3' - xylyl sub-unit was obtained in 87% yield by reaction of ditosylate 9 with bis [2 - (o - hydroxyphenoxy)ethyl]ether (11) in the presence of cesium fluoride. The synthesis of crown ethers with a 2' - hydroxy - 1',3' - xylyl sub-unit (1ce, H for CH3) by demethylation of the corresponding 2'-methoxy crown ethers 1ce with lithium iodide were unsuccessful; it would appear that the demethylation reaction is restricted to 15- and 18-membered rings. One of the 2' - hydroxy - 1',3' - xylyl crown ethers 8d forms a crystalline 1:1-complex with water.  相似文献   

16.
C. B. Kanner  U. K. Pandit 《Tetrahedron》1982,38(24):3597-3604
Reactions of β-aminoacrylic esters (1–c) and amides (1d–o) with benzyl bromide 2 and cinnamyl bromide 3 give products which are dependent both upon the nature of the amine component of the enamine and, in the case of the amides, upon the amine from which the amide is derived. The β-enamino esters react with benzyl bromide to yield predominantly dialkylated products in the case of the pyrrolidine ester 1a. Reactions of the same esters with cinnamyl bromide yield mixtures of cinnamyl and 2-phenylpropenyl-substituted formylacetic esters. The enamino amides 1d–f react to yield the expected alkylated derivatives. The anilides 1i–o exhibit nucleophilic reactivity at the aniline nitrogen. A mechanism leading to the observed products is proposed.  相似文献   

17.
Three new unsolvated organometallic complexes of dysprosium(III) with very sterically hindered π-ligands have been synthesized and structurally characterised: the monomeric bis[η5-(1,2,4-tris-trimethylsilylcyclopentadienyl)]iododysprosium (1b), bis[η5-(1,4-bis-t-butyl-2,3-dimethylphospholyl)]iododysprosium, (1c) and the dimeric tetrakis[η5-(1,4-bis-t-butyl-2,3-dimethylphospholyl)]bis(μ-iodo)di-dysprosium (1d). The relative steric bulk of the π-ligands have been assessed by comparison of the structural data of 1bd with that of the previously described bis[η5-(1,2,4-tris-t-butylcyclopentadienyl)]iododysprosium (1a). Contrary to 1a, reduction attempts on 1bd were unsuccessful. The reaction of the dysprosium(II) complex bis[η5-(1,2,4-tris-t-butylcyclopentadienyl)]dysprosium(μ-bromo)-potassium[18]crown-6 (3) with fluorenone resulted in its monoelectronic reduction and coordination of the resulting ketyl to dysprosium(III): isolation of potassium[18]crown-6 bis[η5-(1,2,4-tris-t-butylcyclo-pentadienyl)](fluorenone ketyl)bromodysprosate (4) that was structurally characterised.  相似文献   

18.
To design innovative and novel optical materials with high mobility, two kinds of disubstituted derivatives for meridianal isomer of tris(8-hydroxyquinolinato)aluminum (mer-Alq3) with push–pull (X–Y) substituents have been designed. The structures of tris(4-X-6-Y-8-hydroxyquinolinato)aluminum (type 1) and tris(4-Y-6-X-8-hydroxyquinolinato)aluminum (type 2) (where X = –CH3/–NH2 and Y = –CN/–Cl) in the ground (S0) and first excited (S1) states have been optimized at the B3LYP/6-31G* and CIS/6-31G* level of theory, respectively. All the designed derivatives of type 1 show blue shift while most of the type 2 derivatives show red shift as compared to the mer-Alq3. The emitting color could be tuned from blue to red. We have explained the distribution of HOMOs and LUMOs on different individual ligands. The reorganization energies of tris(4-methyl-6-chloro-8-hydroxyquinolinato)aluminum (1), tris(4-methyl-6-cyano-8-hydroxyquinolinato) aluminum (2), tris(4-chloro-6-methyl-8-hydroxyquinolinato)aluminum (5) and tris(4-cyano-6-methyl-8-hydroxyquinolinato)aluminum (6) are comparable with mer-Alq3. Thus these derivatives might be good candidates for emitting materials possessing comparable charge carrier mobility as mer-Alq3.  相似文献   

19.
New oxathioethers macrocycles have been synthesized and characterized. Each macrocycle consists in structurally defined ether and thioether moieties and an exocyclic double-bond (2ac) or a hydroxymethyl group (3ac). Macrocycles (2ac) have been synthesized by reaction of dianions of thioethers diols (1ac) with 3-chloro-2-chloromethylprop-1-ene. Their hydroboration/oxidation led to corresponding primary alcohols (3ac). Structures of compounds (2b) and (3a) have been determined by X-ray diffraction. The reactivity of the hydroxyl group allowed the preparation of oxathioethers macrocycles bearing a polyether chain or a benzyl group (4a,b) and the synthesis of new bicyclic sandwich-type compounds (5a,b). The ability of these functionalized macrocycles to coordinate to palladium has been investigated.  相似文献   

20.
The electrochemical oxidation of catechols (1a-c) has been studied in the presence of 6-methyl-1,2,4-triazine-3-thion-5-one 3 in aqueous sodium acetate, using cyclic voltammetry and controlled-potential coulometry. A plausible mechanism for the oxidation of catechols and their reaction with 3 is presented. All the catechol derivatives (1a-c) were converted into 7H-thiazolo[3,2-b]-1,2,4-triazin-7-one derivatives (6a-c) through a Michael-type addition reaction of 3 to anodically generated o-quinones. The electrochemical syntheses of 6a-c were successfully performed in one pot in an undivided cell using an environmentally friendly method with high atomic economy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号