首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents the analysis of the global bifurcations and chaotic dynamics for the nonlinear nonplanar oscillations of a cantilever beam subjected to a harmonic axial excitation and transverse excitations at the free end. The governing nonlinear equations of nonplanar motion with parametric and external excitations are obtained. The Galerkin procedure is applied to the partial differential governing equation to obtain a two-degree-of-freedom nonlinear system with parametric and forcing excitations. The resonant case considered here is 2:1 internal resonance, principal parametric resonance-1/2 subharmonic resonance for the in-plane mode and fundamental parametric resonance–primary resonance for the out-of-plane mode. The parametrically and externally excited system is transformed to the averaged equations by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is applied to find the explicit formulas of normal forms associated with a double zero and a pair of pure imaginary eigenvalues. Based on the normal form obtained above, a global perturbation method is utilized to analyze the global bifurcations and chaotic dynamics in the nonlinear nonplanar oscillations of the cantilever beam. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Silnikov type single-pulse homoclinic orbit in the averaged equation for the nonlinear nonplanar oscillations of the cantilever beam. These results show that the chaotic motions can occur in the nonlinear nonplanar oscillations of the cantilever beam. Numerical simulations verify the analytical predictions.  相似文献   

2.
    
Poincaré type integral inequality plays an important role in the study of nonlinear stability (in the sense of Arnold’s second theorem) for three-dimensional quasigeostophic flow. The nonlinear stability of Eady’s model is one of the most important cases in the application of the method. But the best nonlinear stability criterion obtained so far and the linear stability criterion are not coincident. The two criteria coincide only when the period of the channel is infinite. To fill this gap, the enhanced Poincaré inequality was obtained by considering the additional conservation law of momentum and by rigorous estimate of integral inequality. So the new nonlinear stability criterion was obtained, which shows that for Eady’s model in the periodic channel, the linear stable implies the nonlinear stable. Foundation item: the Municipal Key Subject Program of Shanghai of China Biography: LIU Yong-ming, Professor, E-mail: ymliu@math.ecnu.edu.cn  相似文献   

3.
The geometrically nonlinear periodic vibrations of beams with rectangular cross section under harmonic forces are investigated using a p-version finite element method. The beams vibrate in space; hence they experience longitudinal, torsional, and nonplanar bending deformations. The model is based on Timoshenko’s theory for bending and assumes that, under torsion, the cross section rotates as a rigid body and is free to warp in the longitudinal direction, as in Saint-Venant’s theory. The theory employed is valid for moderate rotations and displacements, and physical phenomena like internal resonances and change of the stability of the solutions can be investigated. Green’s nonlinear strain tensor and Hooke’s law are considered and isotropic and elastic beams are investigated. The equation of motion is derived by the principle of virtual work. The differential equations of motion are converted into a nonlinear algebraic form employing the harmonic balance method, and then solved by the arc-length continuation method. The variation of the amplitude of vibration in space with the excitation frequency of vibration is determined and presented in the form of response curves. The stability of the solution is investigated by Floquet’s theory.  相似文献   

4.
The geometry of flexible beams that are made of a physically nonlinear material and have a nearly linear load-deflection characteristic is identified for a wide range of monotonic and harmonic loads. The geometrically nonlinear beam equations are used. The physically nonlinear behavior of the material is described using a unified viscoplastic theory. A beam thickness criterion is formulated to provide nearly linear stiffness characteristic of the beam in the case of significant deflections and physically nonlinear deformations of the beam’s outer layers __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 2, pp. 85–92, February 2006.  相似文献   

5.
This paper aims the nonlinear aeroelastic analysis of slender wings using a nonlinear structural model coupled with the linear unsteady aerodynamic model. High aspect ratio and flexibility are the specific characteristic of this type of wings. Wing flexibility, coupled with long wingspan can lead to large deflections during normal flight operation of an aircraft; therefore, a wing in vertical/forward-afterward/torsional motion using a third-order form of nonlinear general flexible Euler–Bernoulli beam equations is used for structural modeling. Unsteady linear aerodynamic strip theory based on the Wagner function is used for determination of aerodynamic loading on the wing. Combining these two types of formulation yields nonlinear integro-differentials aeroelastic equations. Using the Galerkin’s method and a mode summation technique, the governing equations will be solved by introducing a numerical method without the need to adding any aerodynamic state space variables and the corresponding equations related to these variables of the problem. The obtained equations are solved to predict the aeroelastic response of the problem. The obtained results for a test case are compared with those of some other works and show a good agreement between results.  相似文献   

6.
A microscale nonlinear Bernoulli–Euler beam model on the basis of strain gradient elasticity with surface energy is presented. The von Karman strain tensor is used to capture the effect of geometric nonlinearity. Governing equations of motion and boundary conditions are obtained using Hamilton’s principle. In particular, the developed beam model is applicable for the nonlinear vibration analysis of microbeams. By employing a global Galerkin procedure, the ordinary differential equation corresponding to the first mode of nonlinear vibration for a simply supported microbeam is obtained. Numerical investigations show that in a microbeam having a thickness comparable with its material length scale parameter, the strain gradient effect on increasing the beam natural frequency is higher than that of the geometric nonlinearity. By increasing the beam thickness, the strain gradient effect decreases or even diminishes. In this case, geometric nonlinearity plays the main role on increasing the natural frequency of vibration. In addition, it is shown that for beams with some specific thickness-to-length parameter ratios, both geometric nonlinearity and size effect have significant role on increasing the frequency of nonlinear vibration.  相似文献   

7.
In this paper the post-critical behavior of beam columns with variable mass and stiffness properties subjected to follower forces arbitrarily distributed along their length in the presence of damping (both internal and external) is investigated using a complete nonlinear dynamic analysis. Although the static nonlinear analysis is more economical in computational cost, it is associated only with the loss of local stability via flutter or divergence. Thus, the nonlinear dynamic analysis is adopted in order to examine the global stability of the system. The governing equations of hyperbolic type are derived in terms of the displacements by considering (a) nonlinear response including the axial deformation, (b) nonlinear response excluding the axial deformation and (c) linear response. Moreover, as the cross-sectional properties of the beam vary along its axis, the resulting coupled nonlinear differential equations have variable coefficients. Their solution is achieved using the analog equation method (AEM) of Katsikadelis. Besides its accuracy and effectiveness, this method overcomes the shortcoming of a possible FEM solution which may experience a lack of convergence. The problems treated in this investigation include beam columns with various load distributions, such as constant, linear and parabolic. Some of the conclusions detected in studying the nonlinear dynamic stability of Beck’s column with variable cross section (Katsikadelis and Tsiatas, Nonlinear dynamic stability of damped Beck’s column with variable cross section. Int. J. Non-linear Mech. 42, 164–171, 2007), are also valid for the case of distributed loads. The important, however, finding is that the post-critical response under distributed loads depends on the law of distribution of mass and stiffness properties, which may lead also to explosive flutter (unbounded amplitude), in contrast to Beck’s column (end-tip load) where the motion is always bounded.  相似文献   

8.
Thermo-mechanical vibrations of a simply supported spring-mass-beam system are investigated analytically in this paper. Taking into account the thermal effects, the nonlinear equations of motion and internal/external boundary conditions are derived through Hamilton’s principle and constitutive relations. Under quasi-static assumptions, the equations governing the longitudinal motion are transformed into functions of transverse displacements, which results in three integro-partial differential equations with coupling terms. These are solved using the direct multiple-scale method, leading to closed-form solutions for the mode functions, nonlinear natural frequencies and frequency–response curves of the system. The influence of system parameters on the linear and nonlinear natural frequencies, mode functions, and frequency–response curves is studied through numerical parametric analysis. It is shown that the vibration characteristics depend on the mid-plane stretching, intra-span spring, point mass, and temperature change.  相似文献   

9.
Models of geometrically nonlinear Euler-Bernoulli, Timoshenko, and Sheremet’ev-Pelekh beams under alternating transverse loading were constructed using the variational principle and the hypothesis method. The obtained differential equation systems were analyzed based on nonlinear dynamics and the qualitative theory of differential equations with using the finite difference method with the approximation O(h2) and the Bubnov-Galerkin finite element method. It is shown that for a relative thickness λ ⩽ 50, accounting for the rotation and bending of the beam normal leads to a significant change in the beam vibration modes.  相似文献   

10.
In this paper, nonlinear resonances in a coupled shaker-beam-top mass system are investigated both numerically and experimentally. The imperfect, vertical beam carries the top mass and is axially excited by the shaker at its base. The weight of the top mass is below the beam’s static buckling load. A semi-analytical model is derived for the coupled system. In this model, Taylor-series approximations are used for the inextensibility constraint and the curvature of the beam. The steady-state behavior of the model is studied using numerical tools. In the model with a single beam mode, parametric and direct resonances are found, which affect the dynamic stability of the structure. The model with two beam modes not only shows an additional second harmonic resonance, but also reveals some extra small resonances in the low-frequency range, some of which can be identified as combination resonances. The experimental steady-state response is obtained by performing a (stepped) frequency sweep-up and sweep-down with respect to the harmonic input voltage of the amplifier-shaker combination. A good correspondence between the numerical and experimental steady-state responses is obtained.  相似文献   

11.
We study the nonlinear stability of electrohydrodynamic of a cylindrical interface separating two conducting fluids of circular cross section in the absence of gravity using electroviscous potential flow analysis. The analysis leads to an explicit nonlinear dispersion relation in which the effects of surface tension, viscosity and electricity on the normal stress are not neglected, but the effect of shear stresses is neglected. Formulas for the growth rates and neutral stability curve are given in general. In the nonlinear theory, it is shown that the evolution of the amplitude is governed by a Ginzburg–Landau equation. When the viscosities are neglected, the cubic nonlinear Schrödinger equation is obtained. Further, it is shown that, near the marginal state, a nonlinear diffusion equation is obtained in the presence of viscosities. The various stability criteria are discussed both analytically and numerically and stability diagrams are obtained. It is also shown that, the viscosity has effect on the nonlinear stability criterion of the system, contrary to previous belief.  相似文献   

12.
Nonlinear dynamics of an inclined beam subjected to a moving load   总被引:1,自引:0,他引:1  
In this paper, the nonlinear dynamic response of an inclined pinned-pinned beam with a constant cross section, finite length subjected to a concentrated vertical force traveling with a constant velocity is investigated. The study is focused on the mode summation method and also on frequency analysis of the governing PDEs equations of motion. Furthermore, the steady-state response is studied by applying the multiple scales method. The nonlinear response of the beam is obtained by solving two coupled nonlinear PDEs governing equations of planar motion for both longitudinal and transverse oscillations of the beam. The dynamic magnification factor and normalized time histories of mid-pint of the beam are obtained for various load velocity ratios and the outcome results have been illustrated and compared to the results with those obtained from traditional linear solution. The appropriate parametric study considering the effects of the linear viscous damping, the velocity of the traveling load, beam inclination angle under zero or nonzero axial load are carried out to capture the influence of the effect of large deflections caused by stretching effects due to the beam’s immovable ends. It was seen that quadratic nonlinearity renders the softening effect on the dynamic response of the beam under the act of traveling load. Also in the case where the object leaves the inclined beam, its planar motion path is derived and the targeting accuracy is investigated and compared with those from the rigid solution assumption. Moreover, the stability analysis of steady-state response for the modes equations having quadratic nonlinearity was carried out and it was observed from the frequency response curves that for the considered parameters in the case of internal-external primary resonance, both saturation phenomenon and jump phenomenon can be predicted for the longitudinal excitation.  相似文献   

13.
A complete semi-analytical solution is obtained for second-order diffraction of plane bichromatic waves by a fixed truncated circular column. The fluid domain is divided into interior and exterior regions. In the exterior region, the second-order velocity potential is expressed in terms of ‘locked-wave’ and ‘free-wave’ components, both are solved using Fourier and eigenfunction expansions. The resulting ‘locked wave’ potential is expressed by one-dimensional Green's integrals with oscillating integrands. In order to increase computational efficiency, the far-field part of the integrals are carried out analytically. Solutions in both regions are matched on the interface by the potential and its normal derivative continuity conditions. Based on the present approach, the sum-and difference-frequency potentials are efficiently evaluated and are used to generate the quadratic transfer functions which correlates sum-frequency QTFs for a TLP column are present, which are compared for some frequency pairs with those from a fully numerical procedure. Satisfactory agreement has been obtained. QTF spectra for a case study TLP column, generated using the semi-analytical solution are presented. Also given are the results for nonlinear wave field around the column.  相似文献   

14.
A new lattice model of traffic flow based on Nagatani’s model is proposed by taking the effect of driver’s memory into account. The linear stability condition of the extended model is obtained by using the linear stability theory. The analytical results show that the stabile area of the new model is larger than that of the original lattice hydrodynamic model by adjusting the driver’s memory intensity parameter p of the past information in the system. The modified KdV equation near the critical point is derived to describe the traffic jam by nonlinear analysis, and the phase space could be divided into three regions: the stability region, the metastable region, and the unstable region, respectively. Numerical simulation also shows that our model can stabilize the traffic flow by considering the information of driver’s memory.  相似文献   

15.
The nonlinear synchronous full annular rub motion of a flexible rotor induced by the mass unbalance and the contact-rub force with rigid and flexible stator is studied analytically. The nonlinear property is due to the dry friction force between stator and rotor. The exact solutions of the synchronous full annular rub motion and its run speed regions are obtained. The stability of the synchronous full annular rub motion is discussed analytically. The stability criterion and the stability regions of the synchronous full annular rub motion are obtained. A simplified approximate criterion formula for dynamic stability is also derived under the conditions of large impact stiffness, small damping and small friction. The simplified criterion formula can be used conveniently in engineering and matches the real situations of industry.  相似文献   

16.
This paper considers the steady-state behavior of a transversally excited, buckled pinned–pinned beam, which is free to move axially on one side. This research focuses on higher order single-mode as well as multimode Galerkin discretizations of the beam’s partial differential equation. The convergence of the static load-paths and eigenfrequencies (of the linearized system) of the various higher-order Taylor approximations is investigated. In the steady-state analyses of the semianalytic models, amplitude–frequency plots are presented based on 7th order approximations for the strains. These plots are obtained by solving two-point boundary value problems and by applying a path-following technique. Local stability and bifurcation analysis is carried out using Floquet theory. Dynamically interesting areas (bifurcation points, routes to chaos, snapthrough regions) are analyzed using phase space plots and Poincaré plots. In addition, parameter variation studies are carried out. The accuracy of some semianalytic results is verified by Finite Element analyses. It is shown that the described semianalytic higher order approach is very useful for fast and accurate evaluation of the nonlinear dynamics of the buckled beam system.  相似文献   

17.
This paper investigates the nonlinear flexural dynamic behavior of a clamped Timoshenko beam made of functionally graded materials (FGMs) with an open edge crack under an axial parametric excitation which is a combination of a static compressive force and a harmonic excitation force. Theoretical formulations are based on Timoshenko shear deformable beam theory, von Karman type geometric nonlinearity, and rotational spring model. Hamilton’s principle is used to derive the nonlinear partial differential equations which are transformed into nonlinear ordinary differential equation by using the Least Squares method and Galerkin technique. The nonlinear natural frequencies, steady state response, and excitation frequency-amplitude response curves are obtained by employing the Runge–Kutta method and multiple scale method, respectively. A parametric study is conducted to study the effects of material property distribution, crack depth, crack location, excitation frequency, and slenderness ratio on the nonlinear dynamic characteristics of parametrically excited, cracked FGM Timoshenko beams.  相似文献   

18.
As a preliminary step in the nonlinear design of shape memory alloy(SMA) composite structures,the force-displacement characteristics of the SMA layer are studied.The bilinear hysteretic model is adopted to describe the constitutive relationship of SMA material.Under the assumption that there is no point of SMA layer finishing martensitic phase transformation during the loading and unloading process,the generalized restoring force generated by SMA layer is deduced for the case that the simply supported beam vibrates in its first mode.The generalized force is expressed as piecewise-nonlinear hysteretic function of the beam transverse displacement.Furthermore the energy dissipated by SMA layer during one period is obtained by integration,then its dependencies are discussed on the vibration amplitude and the SMA’s strain(Ms-Strain) value at the beginning of martensitic phase transformation.It is shown that SMA’s energy dissipating capacity is proportional to the stiffness difference of bilinear model and nonlinearly dependent on Ms-Strain.The increasing rate of the dissipating capacity gradually reduces with the amplitude increasing.The condition corresponding to the maximum dissipating capacity is deduced for given value of the vibration amplitude.The obtained results are helpful for designing beams laminated with shape memory alloys.  相似文献   

19.
Using Hamilton’s principle the coupled nonlinear partial differential motion equations of a flying 3D Euler–Bernoulli beam are derived. Stress is treated three dimensionally regardless of in-plane and out-of-plane warpings of cross-section. Tension, compression, twisting, and spatial deflections are nonlinearly coupled to each other. The flying support of the beam has three translational and three rotational degrees of freedom. The beam is made of a linearly elastic isotropic material and is dynamically modeled much more accurately than a nonlinear 3D Euler–Bernoulli beam. The accuracy is caused by two new elastic terms that are lost in the conventional nonlinear 3D Euler–Bernoulli beam theory by differentiation from the approximated strain field regarding negligible elastic orientation of cross-sectional frame. In this paper, the exact strain field concerning considerable elastic orientation of cross-sectional frame is used as a source in differentiations although the orientation of cross-section is negligible.  相似文献   

20.
In this paper large deflection and rotation of a nonlinear Bernoulli-Euler beam with variable flexural rigidity and subjected to a static co-planar follower loading is studied. It is assumed that the angle of inclination of the force with respect to the deformed axis of the beam remains unchanged during deformation. The governing equation of this problem is solved analytically for the first time using a new kind of analytical technique for nonlinear problems, namely the Homotopy Analysis Method (HAM). The present solution can be used for the analysis of a wide range of loads, material/cross section properties and lengths for beams undergoing large deformations. The results obtained from HAM are compared with results reported in previous works. Finally, the load–displacement characteristics of a uniform cantilever beam with different material properties under a follower force applied normal to the deformed beam axis are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号