首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the performance of a nano-optical directional coupler based on gap plasmon waveguides. The coupler consists of two waveguides having a localized coupled plasmon propagating between two semi-cylindrical surfaces. After introducing a fundamental mode of studied waveguides, effects of the structure parameters on the coupling length are shown. Simulation results of the coupler obtained by the compact-2D finite-difference time-domain (FDTD) method comply with those derived by an analytic method with the aid of the finite-element frequency-domain (FEFD) software package of COMSOL.  相似文献   

2.
To investigate light coupling between a long range surface plasmon polariton (LRSPP) waveguide and a conventional integrated optical component, a hybrid vertical directional coupler consisting of a LRSPP waveguides and a dielectric waveguide is investigated and fabricated. In the proposed coupler the dielectric waveguide and LRSPP waveguide are vertically configured for dense integration and strong coupling. The characteristics of the even and odd super-modes of the coupler are also analyzed to design the device. The fabricated device exhibits damped sinusoidal behavior along the coupling length due to propagation loss of the LRSPP waveguide. The maximum power transfer of 86% from the LRSPP waveguide to the dielectric waveguide is achieved at the coupling length of 600 μm. The measured characteristics of the device are in relatively good agreement with a theoretical analysis.  相似文献   

3.
Here, we demonstrate that efficient nano-optical couplers can be developed using closely spaced gap plasmon waveguides in the form of two parallel nano-sized rectangular slots in a thin metal film or membrane. Using the rigorous numerical finite-difference and finite element algorithms, we investigate the physical mechanisms of coupling between two neighboring gap plasmon waveguides and determine typical coupling lengths for different structural parameters of the coupler. Special attention is focused onto the analysis of the effect of such major coupler parameters, such as thickness of the metal film/membrane, slot width, and separation between the plasmonic waveguides. Detailed physical interpretation of the obtained unusual dependencies of the coupling length on slot width and film thickness is presented based upon the energy consideration. The obtained results will be important for the optimization and experimental development of plasmonic sub-wavelength compact directional couplers and other nano-optical devices for integrated nanophotonics.  相似文献   

4.
In this paper we have investigated the performance of a nano-optical power splitter based on gap plasmon waveguides. The structure consists of the rectangular gap plasmon waveguides in metal films. It is clear that the wave number and correspondingly light confinement and the loss in the waveguides are the most effective parameters in power splitting, but as we know coupling length is another important factor which should be considered. Some dependencies of the coupling length and the maximum transfer power on the structure parameters are studied. It has been shown that approximately 43% transfer power for each arm of the splitter is achievable. Simulation results have been obtained by the compact finite-difference time-domain method. The considered structures, because of their small coupling length and dimensions are appropriate for implementation in photonic integrated circuits.  相似文献   

5.
王本立  梁涵  李家方 《中国物理 B》2017,26(11):114103-114103
The propagation length of surface plasmon polaritons(SPPs) is intrinsically limited by the metallic ohmic loss that is enhanced by the strongly confined electromagnetic field. In this paper, we propose a new class of hybrid plasmonic waveguides(HPWs) that can support long-range SPP propagation while keeping subwavelength optical field confinement. It is shown that the coupling between the waveguides can be well tuned by simply varying the structural parameters. Compared with conventional HPWs, a larger propagation length as well as a better optical field confinement can be simultaneously realized. The proposed structure with better optical performance can be useful for future photonic device design and optical integration research.  相似文献   

6.
The design of a vertical directional coupler between a three-dimensional plasmonic slot waveguide and a silicon waveguide is theoretically investigated in detail. It consists of two steps: the design of isolated plasmonic slot waveguide and silicon waveguide and the determination of the gap between the two waveguides and the length of a coupling region. The designed structure transfers 70.8% of the power carried by the silicon waveguide mode to the plasmonic slot waveguide mode when the gap is 150 nm and the coupling length is 2.14 μm. The wavelength dependence of our vertical directional coupler is also studied. The analysis shows that the amount of the transferred power changes slightly over a very wide wavelength range between 1.40 μm and 1.61 μm. Moreover, if we employ the fabrication technology for silicon photonics, it is quite tolerant to the variation of the length of its coupling section. Finally, the vertical directional coupler is considered for a polarizer.  相似文献   

7.
《Physics letters. A》2020,384(4):126103
A three-dimensional frequency selective structure (3D FSS) was proposed by applying the spoof surface plasmon (SSP) structures into periodic waveguides, which realizes an enhanced broadband transmission in low frequencies, below the cut-off frequency of periodic waveguides. The transmission characteristics of SSP structures and periodic waveguides as well as their coupling modes are investigated by simulation and experiment method. According to our analysis, the pass-band of this 3D FSS can be customized through changing the values of structure parameters and it also has a good angular stability. In addition, this paper also provides a simple assembly plan for sample preparation. This proposal may be useful for improving filtering performances and gives an effective approach for designing 3D FSSs.  相似文献   

8.
张凯  杜春光  高健存 《物理学报》2017,66(22):227302-227302
研究了双层金属薄膜构型中构型参数对长程表面等离子体的影响,并发现了衰减全反射激发方法下长程表面等离子体的增强效应.以特征矩阵算法为基础,通过数值计算构型的反射谱,研究构型参数的变化对反射谱的影响.发现由于衰减全反射激发方法中耦合器的存在导致的非对称特性,会使双层金属薄膜构型中的长程表面等离子体拥有本征模式特性以外的有趣特性,如长程模式得到增强而另一支受到抑制,从而使能量更为集中在希望被激发的一支.研究结果对非对称激发构型中的长程表面等离子体研究具有启发意义.  相似文献   

9.
We investigate a photonic crystal (PC) waveguide coupler which is formed by two closely spaced linear waveguides in a two-dimensional triangular lattice of air holes. Our study shows that shifting one row of the air holes between the waveguides affects the dispersion curves of the guided modes and if the triangular lattice of air holes between the waveguides is replaced by a rectangular lattice, this modification results in an ultra-short coupling structure with coupling length less than 3a, where a is the lattice constant. Also, we investigate the effect of changing the radii of air holes that are adjacent to or between the waveguides on the coupling length and show that increasing the radius of air holes between the waveguides decreases the coupling length. We analyze the output spectrum of an ultra-short channel drop filter designed based on this structure.  相似文献   

10.
郭福源  王明华 《光学学报》2006,26(12):797-1802
根据TE0模光波导的本征场分布、瑞利索末菲标量衍射积分公式和激励源与光波导耦合的匹配效率公式,给出光波导端面衍射和耦合的归一化发射系数和接收系数计算公式,推导出光波导端面非接触耦合的耦合效率计算公式。光波导模场分布采用高斯函数近似表达,给出简洁的计算光波导端面非接触耦合的耦合效率函数表达式。最后,基于星形光波导耦合器结构参量的特点,将累加运算采用积分运算近似表达,给出星形光波导耦合器接收光波导总的接收效率与耦合器基本参量的关系,阐明了星形光波导耦合器的耦合特性。  相似文献   

11.
For developing large area opto-electronic silicon-on-insulator (SOI) devices, the optical coupler is a basic key device. In this article, the authors design and simulate 1 2 2 directional waveguide coupling and Y-branch coupling optical couplers based on Unibond SOI rib waveguides. The beam propagation method (BPM) is used for light propagation analysis. The simulation results and comparisons of the two kinds of optical couplers are reported. The S-bend waveguide for attaching to the two kinds of SOI optical coupler is also analyzed by BPM. We find that the directional coupler has lower power loss, but the Y-junction coupler is more wavelength insensitive with the same device size and splitting angle. The fabrication tolerance analysis shows Y-junction coupler has better fabrication characteristics.  相似文献   

12.
1.IntroductionOpticalspatialsolitoninduced-waveguidesareofgreatresearchinterestrecently[1-8]becauseoftheirPOtentialapplicationinopticalcommunicationsandopticalcompution.Asoliton--inducedwaveguidecanguidelightinself--focusingorself--defocusingKerr-typemediabecausethesolitonbeaminducesarefractive-indexprofileequivalenttoanordinarydielectricwaveguide.Soliton-inducedwaveguidecansupPOrtmanymodesofaprobebeampropagatingcoaxiallyalongthesolitonwaveguideSoliton-inducedwaveguideshaveadvantageovertheir…  相似文献   

13.
A polarization-independent optical directional coupler based on slot waveguides is proposed and analyzed by using rigorous full-vectorial analysis methods based on a finite-element scheme. Properly choosing materials and structural parameters makes the coupling length for quasi-TE modes become equal to that for quasi-TM modes. Tolerances to operating wavelength and structural parameters are also discussed. The proposed coupler can be used for highly integrated optical circuits without polarization diversity schemes.  相似文献   

14.
何昌杰  张威  巨金川  许流荣  曹鸿昌 《强激光与粒子束》2023,35(5):053004-1-053004-6
为实现模块化相对论速调管放大器功率、频率和相位的在线测量,对紧凑型高定向性高带宽的定向耦合器进行了仿真和实验研究。利用小孔耦合理论和相位叠加原理进行理论分析,设计了一种双孔紧凑型定向耦合器,在此基础上采用主、副波导正交连接,耦合孔沿轴向和角向二维分布的方法,进一步缩短了耦合器的长度。通过电磁仿真对耦合器各参数进行优化,模拟结果表明:当中心频率为10 GHz时,普通双孔定向耦合器对TM01模式的耦合度为-60.68 dB,在250 MHz的带宽内定向性大于20 dB,此时耦合区长度为3.49 cm。改进型定向耦合器对TM01模式的耦合度为-58.1 dB,在300 MHz的带宽内定向性大于20 dB,此时耦合区长度仅为1.8 cm(约0.6λ)。耦合器的冷腔实验测量结果与仿真结果符合较好。  相似文献   

15.
A simple single-polarization single-mode (SPSM) photonic crystal fiber (PCF) coupler with two cores is introduced. The full-vector finite-element method (FEM) is applied to analyze the modal interference phenomenon of the even and odd modes of two orthogonal polarizations and the power propagation within the two cores. Meanwhile, the SPSM coupling wavelength range and its corresponding coupling length for different structure parameters are numerically analyzed. The numerical results show that SPSM coupling can be realized with a broad range of wavelength, and the coupling length can be of millimeter magnitude. Moreover, the SPSM coupling wavelength range and the coupling length can be optimized by designing proper mirco-structure parameters of the coupler.  相似文献   

16.
孙建忠  章乐  高飞 《中国物理 B》2016,25(10):108701-108701
We propose and numerically demonstrate a compact terahertz wave switch which is composed of two graphene waveguides and three graphene ring resonators. Changing the bias voltage of the Fermi level in the center graphene ring, the resonant mode can be tuned when the plasmon waves in the waveguides and rings are coupled. We theoretically explain their mechanisms as being due to bias voltage change induced carrier density of graphene modification and the coupling coefficients of graphene plasmon effect after carrier density change, respectively. The mechanism of such a terahertz wave switch is further theoretically analyzed and numerically investigated with the aid of the finite element method. With an appropriate design, the proposed device offers the opportunity to ‘tune' the terahertz wave ON–OFF with an ultra-fast, high extinction ratio and compact size. This structure has the potential applications in terahertz wave integrated circuits.  相似文献   

17.
本文的主要内容是分析并计算光频波段的矩形芯双沟道定向耦合器的耦合特性,利用变分法求解耦合长度。所得结果精确度高,物理图像清晰,计算简便且易于推广。  相似文献   

18.
Prasanta Mandal  Swati Midda 《Optik》2011,122(20):1795-1798
Logic gates are the fundamental building blocks in any digital data processing system. Several all optical logic operations are already proposed by scientists and technologists. Here the authors proposed a new method of all optical logic operation based on nonlinear directional coupler. Effective optical switching is achieved by modifying the coupling length between the coupler waveguides by means of an optical signal.  相似文献   

19.
We investigate the energy transfer of surface plasmon polaritons (SPPs) based on adiabatic passage in a non-Hermitian waveguide composed of three coupled graphene sheets. The SPPs can completely transfer between two outer waveguides via the adiabatic dark mode as the waveguides are lossless and the coupling length is long enough. However, the loss of graphene can lead to breakdown of adiabatic transfer schemes. By utilizing the coupled mode theory, we propose three approaches to cancel the nonadiabatic coupling by adding certain gain or loss in respect waveguides. Moreover, the coupling length of waveguide is remarkably decreased. The study may find interesting application in optical switches on a deep-subwavelength scale.  相似文献   

20.
The contra-directional coupling between two photonic crystal (PC) waveguides is studied, using the finite-difference time-domain (FDTD) method. A design of contra-directional coupler is presented and its transmission properties are investigated. The device can be used as an add/drop filter. It is also shown that the coupled mode theory is suitable to study the photonic crystal waveguide coupler.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号