共查询到20条相似文献,搜索用时 15 毫秒
1.
The polarization-dependent photonic band gaps (TM and TE polarizations) in two-dimensional photonic crystals with square lattices
composed of air holes in dielectric and vice versa i.e., dielectric rods in air, using the plane-wave expansion method are investigated. We then study, how the photonic band
gap size is affected by the changing ellipticity of the constituent air holes/dielectric rods. It is observed that the size
of the photonic band gap changes with changing ellipticity of the constituent air holes/dielectric rods. Further, it is reported,
how the photonic band gap size is affected by the change in the orientation of the constituent elliptical air holes/dielectric
rods in 2D photonic crystals. 相似文献
2.
We analyze the tunability of full band gap in photonic crystal slabs created by square and triangular lattices of air holes in anisotropic tellurium background, considering that the regions above and below the slab are occupied by SiO2 and the holes are infiltrated with liquid crystals. Using the supercell method based on plane wave expansion, we study the variation of full band gap by changing the optical axis orientation of liquid crystal. Our results demonstrate the existence and remarkable tunability of full band gap in both square and triangular lattices, largest band gap and tunability being obtained for the triangular lattice. 相似文献
3.
The photonic band gaps in one-dimensional photonic crystals (PCs) are theoretically investigated. A new method to broaden the photonic band gaps is introduced. Based on the similar method, a kind of photonic crystals is constructed to generate photonic band gaps with proportioned central frequencies. This technology can be used for designing nonlinear PCs for harmonic generation. 相似文献
4.
S. Roshan Entezar A. MadaniA. Namdar H. Tajalli 《Journal of magnetism and magnetic materials》2012,324(9):1739-1744
The effect of anisotropy on the photonic band structure and surface polaritons of a one-dimensional photonic crystal made of uniaxially anisotropic epsilon-negative (ε<0,μ>0) and mu-negative (ε>0,μ<0) metamaterials is theoretically investigated. Two different cases of uniaxially anisotropic epsilon-negative and mu-negative metamaterials are considered. It is found out that for one case of anisotropy, one-dimensional photonic crystal does not have any single-negative band gap. As a result, it can not support the surface polaritons. While, for another case, the structure shows single-negative band gaps. So, the surface polaritons can be excited at the interface of such a photonic crystal. However, these surface polaritons, unlike the isotropic case, are not omnidirectional and they are restricted to a limited rang of the propagation constant. 相似文献
5.
6.
Eye-protection glasses against YAG laser injury based on the band gap reflection of one-dimensional photonic crystal 总被引:3,自引:0,他引:3
Ming Chen Chunfei Li Mai Xu Weibiao Wang Shaojie Ma Yuxue Xia 《Optics & Laser Technology》2007,39(1):214-218
Eye-protection glasses against YAG laser injury based on band gap reflection of one-dimensional photonic crystal (PC) is designed and manufactured in this paper. The laser beam (wavelength 1.06 μm) is reflected by the one-dimensional PC (with the transmission 10−7) and absorbed by the phosphatic glass substrate (with the transmission 1% for 1.06 μm), so the transmission of the device for wavelengths of1.06 μm can reach 10−9. The glasses have enough capabilities to protect the eyes from injury of ns-YAG lasers whose energy density is 1 J/cm2 for all incident angles, and also to avoid a second injury to others from the reflected laser beams. The transmission of the glasses is beyond 70% for the visible lights. The testing data of the eye-protection glasses agree well with the theoretical predictions. 相似文献
7.
In this paper we investigate, by the plane wave expansion method and an analytical model, the temperature effect on the photonic band gap fiber, and we report on a numerical demonstration of a temperature sensor based on the photonic band gap (PBG) shift in a solid core photonic crystal fiber (PCF) infiltrated with a high refractive index oil. The bandwidth and the position of the central wavelength of the band gap are the parameters of interests for our temperature sensing purpose. Simulation results were found to be in excellent agreement with the refractive index scaling law and the highest sensitivity of 3.21?nm/°C was achieved, and it will be even higher than the grating based sensors written in PCFs with similar structure. 相似文献
8.
Laxmi Shiveshwari 《Optik》2011,122(17):1523-1526
We consider the oblique propagation of electromagnetic waves in one-dimensional plasma dielectric photonic crystals, the superlattice structure consisting of alternating plasma and dielectric materials using transfer matrix method. Our results show that photonic band gaps for all polarizations can be obtained in one-dimensional plasma dielectric photonic crystals. These structures can exhibit a new type of band or gap, for the incidence angles other than normal incidence, near frequencies where the electric permittivity of the plasma layer changes sign. This new band or gap arises, from the dispersive properties of the plasma layer, only for TM polarized waves and its width increases with the increasing angle of incidence. This differential behaviour under polarization can be utilized in the design of an efficient polarization splitter. The band characteristic is affected by the plasma width, the plasma density, dielectric width, the dielectric constant of the dielectric medium and angle of incidence. 相似文献
9.
10.
We analyze the absolute photonic band gap in two dimensional (2D) square, triangular and honeycomb lattices composed of air holes or rings with different geometrical shapes and orientations in anisotropic tellurium background. Using the numerical plane wave expansion method, we engineer the absolute photonic band gap in modified lattices, achieved by addition of circular, elliptical, rectangular, square and hexagonal air hole or ring into the center of each lattice unit cell. We discuss the maximization of absolute photonic band gap width as a function of main and additional air hole or ring parameters with different shapes and orientation. 相似文献
11.
12.
In this paper, the wave transmission from finite photonic crystals with multiple alternations is investigated using boundary element method (BEM). Since that, in these structures the alternation is not in all directions of space; the investigations of the frequency band gap with desired accuracy are not practical by analytical methods. Also, the frequency dispersion of dielectric rods is an effective parameter in photonic crystals, which this effect in our calculations has been considered. Due to the high capabilities of the BEM, the transmitted wave spectrum in the photonic crystal is calculated by changing the geometrical and optical parameters of the photonic crystal and applying more alternation in its structure and the position and width of the frequency band gap is investigated. Then, it is assumed that the photonic crystal with an arbitrary angle is rotated around the axis which is perpendicular on the crystal cross section and then, it is irradiated with a plan wave. The band gap of the photonic crystals with the desired structure, desired rotation angle and multiple alternations have been solved. Very low information volume, high speed and accuracy during the calculation and useable for any desired structures are the characteristics of this method. 相似文献
13.
GK Johri Akhilesh Tiwari Saumya Saxena Rajesh Sharma Kuldeep Srivastava Manoj Johri 《Pramana》2002,58(3):563-567
Calculations for the relative width (Δω/ω0) as a function of refractive index and relative radius of the photonic band gap for the fcc closed packed 3-D dielectric
microstructure are reported and comparison of experimental observations and theoretical predictions are given. This work is
useful for the understanding of photonic crystals and occurrence of the photonic band gap. 相似文献
14.
Photonic crystal waveguide directional couplers as wavelength selective optical filters 总被引:4,自引:0,他引:4
Waveguide directional couplers, formed by two closely spaced linear defect waveguides in a two-dimensional photonic crystal of air holes in a semiconductor matrix, are numerically studied using plane wave expansion and finite difference time domain methods. The coupling lengths are on a wavelength scale and show a strong wavelength dependence, allowing for the design of compact wavelength selective optical filters. Applications as a channel interleaver for the 1.55 μm wavelength range and as a micrometer sized 1.31/1.55 μm wavelength demultiplexer are presented. 相似文献
15.
用时域有限差分法研究了电磁波在等离子体光子晶体中的传播特性。数值模拟中使用完全匹配层吸收边界条件,计算了电磁波通过等离子体光子晶体的反射和透射系数。讨论了等离子体密度、等离子体温度、介电常数比和引入缺陷层对等离子体光子晶体光子带隙的影响。 相似文献
16.
17.
Using the revised plane wave method, we have calculated the photonic band structures of 2D metallic photonic crystals composed of parallel metallic rods in air background and air holes drilled in metal background. We discuss the maximization of gap-to-midgap ratio as a function of scatterer parameters with different shapes and orientations in three types of lattices. 相似文献
18.
19.
设计了一种因掺杂而具有超窄带滤波特性的光子晶体滤波器和一种复周期结构的梳状多通道光子晶体滤波器。在两种均匀介质交替分布的周期结构中间插入一层折射率不同的介质膜后,通过传输矩阵法的数值计算,发现采用前后不对称的周期结构并调节参数,可以在1 550 nm处找到一个透射率接近100%的极窄的透过峰,因而可得到一种超窄带光子晶体滤波器。另外,在以高低两种折射率的介质交替分布,并以两种单独的单元周期合并组成一个复周期,然后进行周期重复构成的光子晶体中,利用通道数等于复周期数减1的规律,并配合各层厚度的调节,设计出在1 550 nm附近梳状8通道和16通道的光子晶体滤波器,各通道透过峰的透射率均接近100%,由此设计出一种梳状多通道光子晶体滤波器。 相似文献