首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface-induced interactions of the projectile ion C2D4+ with room-temperature (hydrocarbon covered) stainless steel, carbon highly oriented pyrolytic graphite (HOPG), and two different types of diamond surfaces (O-terminated and H-terminated) were investigated over the range of incident energies from a few eV up to 50 eV. The relative abundance of the product ions in dependence on the incident energy of the projectile ion [collision-energy resolved mass spectra, (CERMS) curves] was determined. The product ion mass spectra contained ions resulting from direct dissociation of the projectile ions, from chemical reactions with the hydrocarbons on the surface, and (to a small extent) from sputtering of the surface material. Sputtering of the surface layer by low-energy Ar+ ions (5–400 eV) indicated the presence of hydrocarbons on all studied surfaces. The CERMS curves of the product ions were analyzed to obtain both CERMS curves for the products of direct surface-induced dissociation of the projectile ion and CERMS curves of products of surface reactions. From the former, the fraction of energy converted in the surface collision into the internal excitation of the projectile ion was estimated as 10% of the incident energy. The internal energy of the surface-excited projectile ions was very similar for all studied surfaces. The H-terminated room-temperature diamond surface differed from the other surfaces only in the fraction of product ions formed in H-atom transfer surface reactions (45% of all product ions formed versus 70% on the other surfaces).  相似文献   

2.
A route to efficient generation of C6H4+*, potentially the benzyne radical cation, is presented. Laser vaporization of Mg+* and supersonic expansion in helium doped with o-, m-, or p-C6H4F2 yields, among other ions, o-, m-, p-C6H4F2Mg+* complexes, but no C6H4+*. Collision-induced dissociation experiments show that the o-C6H4F2Mg+* complex can be converted into C6H4+* in a mildly energetic collision, with a center-of-mass energy around 1-2 eV. These conditions can also be reached in the ion source when argon is used as a carrier gas. In this way, mass spectra containing the desired m/z 76 peak, i.e. C6H4+*, are obtained.  相似文献   

3.
Surface-induced dissociation (SID) and reactions following impact of well-defined ion beams of polyatomic cations C2H5OH+, CH4+, and CH5+ (and its deuterated variants) at several incident angles and energies with self-assembled monolayers (SAM), carbon surfaces, and hydrocarbon covered stainless steel were investigated by the scattering method. Energy transfer and partitioning of the incident projectile energy into internal excitation of the projectile, translational energy of products, and energy transferred into the surface were deduced from the mass spectra and the translational energy and angular distributions of the product ions. Conversion of ion impact energy into internal energy of the recoiling ions peaked at about 17% of the incident energy for the perfluoro-hydrocarbon SAM, and at about 6% for the other surfaces investigated. Ion survival probability is about 30–50 times higher for closed-shell ions than for open-shell radical cations (e.g., 12% for CD5+ versus 0.3% for CD4+, at the incident angle of 60° with respect to the surface normal). Contour velocity plots for inelastic scattering of CD5+ from hydrocarbon-coated and hydrocarbon-free highly oriented pyrolytic graphite (HOPG) surfaces gave effective masses of the surface involved in the scattering event, approximately matching that of an ethyl group (or two methyl groups) and four to five carbon atoms, respectively. Internal energy effects in impacting ions on SID were investigated by comparing collision energy resolved mass spectra (CERMS) of methane ions generated in a low pressure Nier-type electron impact source versus those generated in a Colutron source in which ions undergo many collisions prior to extraction and are essentially vibrationally relaxed. This comparison supports the hypothesis that internal energy of incident projectile ions is fully available to drive their dissociation following surface impact.  相似文献   

4.
The fragmentation process of ionized 1,4-dioxane and the reactions between the C3H6O+* ions, one of the major fragments, and various reactants (including acetonitrile, formaldehyde, ethylene, and propene) have been studied experimentally with mass spectrometry. In the present work, G3(MP2) calculations were carried out to investigate these processes theoretically. In agreement with experiment, isomers CH3OCHCH2+* (1) and *CH2CH2OCH2+ (2) were found to be the C3H6O+* ions fragmented from ionized 1,4-dioxane, with 2 being the major product. The mechanisms of the formation of 1 and 2 were successfully established. In addition, the characteristic reactivities, as well as the corresponding reaction mechanisms, of both isomers were rationalized with the aid of calculations. Finally, a minor reaction between isomer 2 and propene was identified, and the presence of the product of this reaction was found to be useful in explaining the aforementioned mass spectrometric data.  相似文献   

5.
Dissociations to alkane ions in gas phase ion chemistry are rare and poorly characterized. Therefore, the pathways to CH3CH3+* + CO from *CH2CH2O+=CH2 and some of its isomers are investigated by theory. The pathway found for this reaction is *CH2CH2O+=CH2 --> CH3CH2O+=CH* --> [CH3CH2- -H- -CO]+* --> CH3CH+* + CO. The crucial intermediate in this pathway is the stable hydrogen-bonded ion-neutral complex [CH3CH2- -H- -CO]+*, a species held together by a strong hydrogen bond. CH3CH3+* + CO rather than CH3CH3 + CO+* is formed from *CH2CH2O+=CH2 and other C3H6O+* ions because the former pair is much more stable than the latter. The photoionization appearance energies of CH3CH3+* from CH3CH2CHO+* and from CH3CH2CO2H+* demonstrate that the onsets of these reactions are at to just above their thermochemical thresholds, consistent with the intermediacy of ion-neutral complexes. We also found transition states for interconversion of CH3CH2CHO+* and CH3CH2O+=CH* and transformation of CH3CH2C:=OH+* to CH3CH2CHO+*; the latter reaction occurs by a 1,2-H-shift from O to C.  相似文献   

6.
How formation of CH3CH3+* competes with H* loss from C3H6O+* isomers with the CCCO framework has been a puzzle of gas phase ion chemistry because the first reaction has a substantially higher threshold and a supposedly tighter transition state. These together should make CH3CH3+* formation much the slower of the two reactions at all internal energies. However, the rates of the two reactions become comparable at about 20 kJ x mol(-1) above the threshold for CH3CH3+* formation. It was recently shown that losses of atomic fragments increase in rate much more slowly with increasing internal energy than do the rates of competing dissociations to two polyatomic fragments. This occurs because fewer frequencies are substantially lowered in transition states for the former type of reaction than for the latter. The resulting lower transition state sums of states cause the rates of dissociations producing atoms as fragments to increase much more slowly than competing processes with increasing energy. Here we show that this is why CH3CH3+* formation competes with H* loss from CH3CH2CHO+*. These results further establish that the dependence on energy of the rate of a simple unimolecular dissociation is usually directly related to the number of rotational degrees of freedom in the products, a newly recognized factor in determining the dependence of unimolecular reaction rates on internal energy.  相似文献   

7.
Highly energetic translational energy distributions are reported for hydrogen and deuterium molecules desorbing associatively from the atomic chemisorption states on highly oriented pyrolytic graphite (HOPG). Laser assisted associative desorption is used to measure the time of flight of molecules desorbing from a hydrogen (deuterium) saturated HOPG surface produced by atomic exposure from a thermal atom source at around 2100 K. The translational energy distributions normal to the surface are very broad, from approximately 0.5 to approximately 3 eV, with a peak at approximately 1.3 eV. The highest translational energy measured is close to the theoretically predicted barrier height. The angular distribution of the desorbing molecules is sharply peaked along the surface normal and is consistent with thermal broadening contributing to energy release parallel to the surface. All results are in qualitative agreement with recent density functional theory calculations suggesting a lowest energy para-type dimer recombination path.  相似文献   

8.
We report the vibrationally mediated photodissociation dynamics of C2H4+ excited through the B2Ag state. Vibrational state-selected ions were prepared by two-photon resonant, three-photon ionization of ethylene via (pi, 3s) and (pi, 3p) Rydberg intermediate states in the wavelength range 298-349 nm. Absorption of a fourth photon led to dissociation of the cation, and images of the product ions C2H3+ and C2H2+ were simultaneously recorded using reflectron multimass velocity map imaging. Analysis of the multimass images yielded, with high precision, both the total translational energy distributions for the two dissociation channels and the branching between them as a function of excitation energy. The dissociation of ions that were initially prepared with torsional excitation exceeding the barrier to planarity in the cation ground state consistently gave enhanced branching to the H elimination channel. The results are discussed in terms of the influence of the initial state preparation on the competition between the internal conversion to the ground state and to the first excited state.  相似文献   

9.
The reactions between OH+(3Sigma-) and C2H2 have been studied using crossed ion and molecular beams and density functional theory calculations. Both charge transfer and proton transfer channels are observed. Products formed by carbon-carbon bond cleavage analogous to those formed in the isoelectronic O(3P)+C2H2 reaction, e.g., 3CH2 + HCO+, are not observed. The center of mass flux distributions of both product ions at three different energies are highly asymmetric, with maxima close to the velocity and direction of the precursor acetylene beam, characteristic of direct reactions. The internal energy distributions of the charge transfer products are independent of collision energy and are peaked at the reaction exothermicity, inconsistent with either the existence of favorable Franck-Condon factors or energy resonance. In proton transfer, almost the entire reaction exothermicity is transformed into product internal excitation, consistent with mixed energy release in which the proton is transferred with both the breaking and forming bonds extended. Most of the incremental translational energy in the two higher-energy experiments appears in product translational energy, providing an example of induced repulsive energy release.  相似文献   

10.
The proton transfer reaction between OH- and C2H2, the sole reactive process observed over the collision energy range from 0.37 to 1.40 eV, has been studied using the crossed beam technique and density-functional theory (DFT) calculations. The center of mass flux distributions of the product C2H- ions at three different energies are highly asymmetric, characteristic of a direct process occurring on a time scale much less than a rotational period of any transient intermediate. The maxima in the flux distributions correspond to product velocities and directions close to those of the precursor acetylene reactants. The reaction quantitatively transforms the entire exothermicity into internal excitation of the products, consistent with an energy release motif in which the proton is transferred early, in a configuration in which the forming bond is extended. This picture is supported by DFT calculations showing that the first electrostatically bound intermediate on the reaction pathway is the productlike C2H- H2O species. Most of the incremental translational energy in the two higher collision energy experiments appears in product translational energy, and provides an example of induced repulsive energy release characteristic of the heavy+light-heavy mass combination.  相似文献   

11.
The structure of ionized 1,5-hexadiene, prepared by charge transfer between 1,5-hexadiene and CS2+*, is examined using energy-resolved collision-induced dissociation (CID). By comparing the product distributions and product appearance curves with those of authentic low-energy C6H10+* ions, it is determined that 1,5-hexadiene cation spontaneously rearranges to cyclohexene cation in the gas-phase. The proposed mechanism for formation of cyclohexene cation in the gas phase is analogous to that determined for this process under matrix isolation conditions, where it proceeds via a Cope rearrangement to the cyclohexane-1,4-diyl cation, followed by isomerization to cyclohexene cation. It is shown that electron ionization (EI) of 1,5-hexadiene gives a different molecular ion than is obtained upon chemical ionization (CI). The energy-resolved CID mass spectrum for the EI product is consistent with what would be obtained for a mixture of low energy ion isomers.  相似文献   

12.
Heavy molecular ions with energies in the range 10-20 keV and masses from 276 u to 132,000 u, produced by matrix-assisted laser desorption, were used as primary projectiles to produce secondary-ion spectra from a variety of surfaces in a tandem time-of-flight mass spectrometer. In the negative mode the ratio of electron emission to secondary-ion emission was found to decrease rapidly with increasing projectile mass. Ion emission was found to dominate for primary ions larger than approximately 10,000 u. Positive or negative molecular ions and cations were observed from several organic targets of masses up to 1140 u (gramicidin S) for incident projectiles up to mass 132,000 u, i.e., for projectile speeds down to approximately 7000 m/s. Other ions characteristic of the target were also observed for these projectiles. Thus, large polyatomic ions can cause secondary-ion desorption even at very low velocity. The background ions of both polarities are similar to those found in keV particle bombardment by monatomic projectiles. The same ions are observed for all the projectiles; most can be identified with hydrocarbon background. The relative intensities of the background positive ions are largely independent of projectile, and for both polarities the ratio of the ions characterizing the target to those forming the background is approximately constant for all the projectiles. These results strongly suggest that the background ions come from the usual layer of organic impurities attached to the target surface. No direct evidence for surface-induced dissociation was observed in this mass and energy range.  相似文献   

13.
Experimental results are reported that track the kinetics of gas-phase reactions initiated by Mg+*, (c-C5H5)Mg+ and (c-C5H5)2Mg+* in hydrogen cyanide and cyanoacetylene. The experiments were performed with a selected-ion flow tube (SIFT) tandem mass spectrometer at a helium buffer-gas pressure of 0.35 +/- 0.01 Torr and at 294 +/- 3 K. The observed chemistries of Mg+* and (c-C5H5)Mg+ are dominated by sequential ligation, while that of (c-C5H5)2Mg+* is by ligand switching. The rate-coefficient measurements for sequential addition of cyanoacetylene to Mg+* indicate an extraordinary pattern in alternating chemical reactivity while multiple-collision induced dissociation experiments revealed an extraordinary stability for the Mg(HC3N)4+* cluster ion. Molecular orbital calculations with density functional theory (DFT) at the B3LYP level, Hartree-Fock (HF) and second-order Mphiller-Plesset (MP2) levels, all performed with a 6-31+G(d) basis set, have been used to calculate structures and energies for the observed Mg(HC3N)1-4(+)* cations. These calculations indicate that the path of formation of Mg(HC3N)4+* involves ligand-ligand interactions leading to two cyclic (HC3N)2 ligands which then interact to form 2,4,6,8-tetracyanosemibullvalene-Mg+ or 1,2,5,6-tetracyano-1,3,5,7-cyclooctatetraene-Mg+ cations. A case is made for the formation of similar complex organomagnesium ions in the upper atmosphere of Titan where subsequent electron-ion recombination may produce cyano derivatives of large unsaturated hydrocarbons. In contrast, circumstellar environments with their much higher relative content of free electrons are less likely to give rise to such chemistry.  相似文献   

14.
Collisions of atomic and molecular ions (I+, Xe, CH3I, I2) with self-assembled fluoroalkyl-monolayer surfaces result in reactions involving the net transfer of fluorine atoms or fluorocarbon radicals from the surface to the projectile ions. The scattered products, which include unusual ionic species such as IF, IF+2, CFI, CF2I+, I2F+, and XeF+, are generated in endothermic ion-surface reactions. These reactions are not observed when the collision partner is a gas-phase (rather than a surface-bound) perfluoroalkane. Evidence is presented which suggests that in some cases molecular projectiles undergo surface-induced dissociation to yield atomic species which subsequently react with the surface. Fluorine abstraction is favored for projectiles containing highly polarizable elements.  相似文献   

15.
We carried out an electron spin resonance (ESR) study on hydrogen ion radicals produced by radiolysis of solid para-H(2). In addition to quartet ESR lines proposed to be H(2) (+)-core H(6) (+) (D(2d)) ions in solid para-H(2) [T. Kumada et al., Phys. Chem. Chem. Phys. 7, 776 (2005)], we newly observed totally more than 50 resolved lines in gamma-ray irradiated solid para-H(2)-ortho-D(2) (1 mol %) and para-H(2)-HD (1 mol %) mixtures. We assigned these lines to be isotope substituents of H(2) (+)-core H(6) (+) ions such as H(5)D(+), H(4)D(2) (+), and H(2)D(4) (+) throughout the comparison of their ESR parameters with theoretical results. These results provide a conclusive evidence that H(2) (+)-core H(6) (+) ions are generated in irradiated solid hydrogens. Analysis of the EPR spectrum and ab initio calculations predicts D(2d) symmetry of the H(6) (+) ions, whereas a lowering symmetry (D(2d)-->C(2v)) induced by asymmetric nuclear wave function is observed in H(5)D(+) and H(4)D(2) (+). We also observed isotope-substitution reactions such as H(6) (+)+D(2)-->H(4)D(2) (+)+H(2) and H(6) (+)+HD-->H(5)D(+)+H(2), which are analogous to the well-known isotope-condensation reactions of H(3) (+) in dark nebula, H(3) (+)+HD-->HD(2) (+)+H(2) and HD(2) (+)+HD-->D(3) (+)+H(2).  相似文献   

16.
Electronic structure calculations at the CASSCF and UB3LYP levels of theory with the aug-cc-pVDZ basis set were used to characterize structures, vibrational frequencies, and energies for stationary points on the ground state triplet and singlet O(2)+C(2)H(4) potential energy surfaces (PESs). Spin-orbit couplings between the PESs were calculated using state averaged CASSCF wave functions. More accurate energies were obtained for the CASSCF structures with the MRMP2/aug-cc-pVDZ method. An important and necessary aspect of the calculations was the need to use different CASSCF active spaces for the different reaction paths on the investigated PESs. The CASSCF calculations focused on O(2)+C(2)H(4) addition to form the C(2)H(4)O(2) biradical on the triplet and singlet surfaces, and isomerization reaction paths ensuing from this biradical. The triplet and singlet C(2)H(4)O(2) biradicals are very similar in structure, primarily differing in their C-C-O-O dihedral angles. The MRMP2 values for the O(2)+C(2)H(4)→C(2)H(4)O(2) barrier to form the biradical are 33.8 and 6.1 kcal/mol, respectively, for the triplet and singlet surfaces. On the singlet surface, C(2)H(4)O(2) isomerizes to dioxetane and ethane-peroxide with MRMP2 barriers of 7.8 and 21.3 kcal/mol. A more exhaustive search of reaction paths was made for the singlet surface using the UB3LYP/aug-cc-pVDZ theory. The triplet and singlet surfaces cross between the structures for the O(2)+C(2)H(4) addition transition states and the biradical intermediates. Trapping in the triplet biradical intermediate, following (3)O(2)+C(2)H(4) addition, is expected to enhance triplet→singlet intersystem crossing.  相似文献   

17.
The charge transfer and deuterium ion transfer reactions between D(2)O(+) and C(2)H(4) have been studied using the crossed beam technique at relative collision energies below one electron volt and by density functional theory (DFT) calculations. Both direct and rearrangement charge transfer processes are observed, forming C(2)H(4) (+) and C(2)H(3)D(+), respectively. Independent of collision energy, deuterium ion transfer accounts for approximately 20% of the reactive collisions. Between 22 and 36 % of charge transfer collisions occur with rearrangement. In both charge transfer processes, comparison of the internal energy distributions of products with the photoelectron spectrum of C(2)H(4) shows that Franck-Condon factors determine energy disposal in these channels. DFT calculations provide evidence for transient intermediates that undergo H/D migration with rearrangement, but with minimal modification of the product energy distributions determined by long range electron transfer. The cross section for charge transfer with rearrangement is approximately 10(3) larger than predicted from the Rice-Ramsperger-Kassel-Marcus isomerization rate in transient complexes, suggesting a nonstatistical mechanism for H/D exchange. DFT calculations suggest that reactive trajectories for deuterium ion transfer follow a pathway in which a deuterium atom from D(2)O(+) approaches the pi-cloud of ethylene along the perpendicular bisector of the C-C bond. The product kinetic energy distributions exhibit structure consistent with vibrational motion of the D-atom in the bridged C(2)H(4)D(+) product perpendicular to the C-C bond. The reaction quantitatively transforms the reaction exothermicity into internal excitation of the products, consistent with mixed energy release in which the deuterium ion is transferred in a configuration in which both the breaking and the forming bonds are extended.  相似文献   

18.
We have investigated, both theoretically and experimentally, the reactions of naphthylium C10H7+ and d-naphthylium C10D7+ ions with H2 and D2. Cross sections as functions of the collision energy have been measured for a variety of reaction channels. Theoretical calculations have been carried out at the density functional theory level which utilizes the hybrid functional B3LYP and the split-valence 6-31G* basis set. The key features of the potential energy surfaces and the relevant thermochemical parameters have been calculated and they provide insights on the reaction mechanisms. The bimolecular reactivity of C10H7+ with H2 is dominated by the production of naphthalene cation C10H8+. The reaction is not a direct atom-abstraction process, but instead it proceeds via the formation of a stable intermediate complex C10H9+ of sigma type geometry, with a significant mobility of hydrogen along the ring. This mobility allows the scrambling of the hydrogen atoms and causes the successive statistical fragmentation of the complex into a variety of product channels. Elimination of one H(D) atom appears to be favored over elimination of one H2 or HD molecule. Alternatively, the intermediate complex can be stabilized either by collision with a third body or by emission of a photon.  相似文献   

19.
Deyerl HJ  Luong AK  Clements TG  Continetti RE 《Faraday discussions》2000,(115):147-60; discussion 175-204
Dynamics in the transition state region of the bimolecular OH + H2O-->H2O + OH hydrogen exchange reaction have been studied by photoelectron-photofragment coincidence spectroscopy of the H3O2- negative ion and its deuterated analog D3O2-. The data reveal vibrationally resolved product translational energy distributions. The total translational energy distribution shows a vibrational progression indicating excitation of the antisymmetric stretch of the water product. Electronic structure calculations at the QCISD level of theory support this analysis. Examination of the translational energy release between the neutral products reveals a dependence on the product vibrational state. These data should provide a critical test of ab initio potential energy surfaces and dynamics calculations.  相似文献   

20.
Using a multi-sector ion-surface scattering mass spectrometer, reagent ions of the general form SiR(3) (+) were mass and energy selected and then made to collide with a hydroxy-terminated self-assembled monolayer (HO-SAM) surface at energies of approximately 15 eV. These ion-surface interactions result in covalent transformation of the terminal hydroxy groups at the surface into the corresponding silyl ethers due to Si--O bond formation. The modified surface was characterized in situ by chemical sputtering, a low-energy ion-surface scattering experiment. These data indicate that the ion-surface reactions have high yields (i.e. surface reactants converted to products). Surface reactions with Si(OCH(3))(3) (+), followed by chemical sputtering using CF(3) (+), yielded the reagent ion, Si(OCH(3))(3) (+), and several of its fragments. Other sputtered ions, namely SiH(OCH(3))(2)OH(2) (+) and SiH(2)(OCH(3))OH(2) (+), contain the newly formed Si--O bond and provide direct evidence for the covalent modification reaction. Chemical sputtering of modified surfaces, performed using CF(3) (+), was evaluated over a range of collision energies. The results showed that the energy transferred to the sputtered ions, as measured by their extent of fragmentation in the scattered ion mass spectra, was essentially independent of the collision energy of the projectile, thus pointing to the occurrence of reactive sputtering.A set of silyl cations, including SiBr(3) (+), Si(C(2)H(3))(3) (+) and Si(CH(3))(2)F(+), were similarly used to modify the HO-SAM surface at low collision energies. A reaction mechanism consisting of direct electrophilic attack by the cationic projectiles is supported by evidence of increased reactivity for these reagent ions with increases in the calculated positive charge at the electron-deficient silicon atom of each of these cations. In a sequential set of reactions, 12 eV deuterated trimethylsilyl cations, Si(CD(3))(3) (+), were used first as the reagent ions to modify covalently a HO-SAM surface. Subsequently, 70 eV SiCl(3) (+) ions were used to modify the surface further. In addition to yielding sputtered ions of the modified surface, SiCl(3) (+) reacted with both modified and unmodified groups on the surface, giving rise not only to such scattered product ions as SiCl(2)OH(+) and SiCl(2)H(+), but also to SiCl(2)CD(3) (+) and SiCl(2)D(+). This result demonstrates that selective, multi-step reactions can be performed at a surface through low-energy ionic collisions. Such processes are potentially useful for the construction of novel surfaces from a monolayer substrate and for chemical patterning of surfaces with functional groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号