首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we report the synthesis of holmium(III)-doped carbon nanodots(Ho BCDs) as fluorescence/magnetic resonance(FL/MR) dual-modal imaging probes via a facile hydrothermal process using citrate acid(CA), branched-polyethylenimine(BPEI) and diethylenetriamine pentaacetic acid hydrate holmium(III) dihydrogen salt(Ho-DTPA) as carbon source, passivating reagent and holmium source, respectively.The thus prepared Ho BCDs exhibited ultra-small particle size(~4 nm), high water solubility and bright fluorescence with an absolute quantum yield of 8%. Additionally, grey-scaled T_1-weighted images of Ho BCDs solution appeared to be apparently brighter than that of deionized water and un-doped blue carbon nanodots(BCDs) solution. In addition, in vitro toxicity assay validated superior biocompatibility of Ho BCDs. Using He La cells as models, Ho BCDs-treated cells were observed to emit blue fluorescence located both in plasma and nucleus, and presented positive contrast enhancement in T_1-weighted images, suggesting their potentials for practical biomedical applications.  相似文献   

2.
Holmium(III)-doped carbon nanodots (HoBCDs) were synthesized for the first time via hydrothermal treatment of citrate acid (CA), branched-polyethylenimine (BPEI) and diethylenetriamine pentaacetic acid hydrate holmium(III) dihydrogen salt (Ho-DTPA), and their dual-modality bioimaging applications were demonstrated by the use of HeLa cells. The as-prepared nanoprobes exhibited bright fluorescence with an absolute quantum yield of 8% and apparent contrast enhancement in T1-weighted images.  相似文献   

3.
Biomass-based carbon nanodots(CNDs) are becoming promising fluorescent materials due to their superior optical properties and excellent biocompatibility. However, most fluorescent CNDs are prepared under high temperatures with artificial chemicals as precursors. In this work, multicolor biomass-based CNDs have been prepared by employing natural biomass as precursors through an ultrasonic-assisted method at room temperature. The multicolor biomass-based CNDs can be prepared within 10 min, and cav...  相似文献   

4.
Graphitic carbon nitride nanodots (g‐C3N4 nanodots), as a new kind of heavy‐metal‐free quantum dots, have attracted considerable attention because of their unique physical and chemical properties. Although various methods to obtain g‐C3N4 nanodots have been reported, it is still a challenge to synthesize g‐C3N4 nanodots with ultrahigh fluorescence quantum yield (QY). In this study, highly fluorescent phosphorus/oxygen‐doped graphitic carbon nitride (P,O‐g‐C3N4) nanodots were prepared by chemical oxidation and hydrothermal etching of bulk P‐g‐C3N4 derived from the pyrolysis of phytic acid and melamine. The as‐prepared P,O‐g‐C3N4 nanodots showed strong blue fluorescence and a relatively high QY of up to 90.2 %, which can be ascribed to intrinsic phosphorus/oxygen‐containing groups, and surface‐oxidation‐related fluorescence enhancement. In addition, the P,O‐g‐C3N4 nanodots were explored for cell imaging with excellent stability and biocompatibility, which suggest that they have great potential in biological applications.  相似文献   

5.
We have employed mannose‐modified gold nanodots (Man–Au NDs) as a luminescence sensor for the detection of the thyroid‐cancer marker thyroglobulin (Tg) in homogeneous solutions. The luminescent Man–Au NDs are prepared through the reaction of 2.9 nm‐diameter gold nanoparticles (Au NPs) with 11‐mercapto‐3,6,9‐trioxaundecyl‐α‐D ‐mannopyranoside (Man‐RSH) under the irradiation of a light‐emitting diode (LED). We have found that the irradiation enhances the quantum yield (~11 %), alters the emission wavelength and lifetimes, and shortens the preparation time. A luminescence assay has been developed for Tg based on the competition between Tg and Man–Au NDs for the interaction with the concanavalin A (Con A). Because luminescence quenching of the Man–Au NDs by Con A is inhibited by Tg selectivity, we have obtained a highly sensitive and selective assay for Tg.  相似文献   

6.
The present study demonstrates the development of a supramolecular porous ensemble consisting of hetero‐oligophenylene derivative 6 and Au‐Fe3O4 nanodots. Supramolecular assemblies of AIE‐active hetero‐oligophenylene derivative 6 served as reactors for the generation of Au‐Fe3O4 nanodots. The as prepared supramolecular ensemble functioned as an efficient recyclable photocatalytic system for C(sp2)?H bond activation of anilines for the construction of quinoline carboxylates. Interestingly, the “dip catalyst” prepared by depositing PTh‐co‐PANI‐6: Au‐Fe3O4 nanodots on a filter paper served as a recyclable strip (up to 10 cycles) for C?C/C?N bond formation reaction.  相似文献   

7.
Highly fluorescent and biocompatible soft materials are desirable for many potential applications, but their synthetic processes are somehow complicated. Herein, we have explored the feasibility of synthesis of unconventional fluorescence soft materials from small organic molecules under mild conditions. A new blue‐fluorescent soft material with high quantum yield (89.6 %) and eutectic feature prepared by simple heat treatment of citric acid (CA) and cysteine (Cys) aqueous mixtures below 100 °C in air was reported. The as‐prepared fluorescent material has the features of facile preparation, low cost, scalable production and easy to process, making it suitable for applications like fluorescent labeling and light‐emitting devices. This new finding opens a new venue for the preparation of fluorescent soft materials.  相似文献   

8.
在水溶液中,以PAMAM树形分子为模板,乙醇为还原剂,制备了树形分子包裹的金纳米颗粒,其水溶性好,可以稳定放置1年以上;通过控制Au3+与PAMAM树形分子的摩尔比,可以得到粒径可控的金纳米颗粒,其粒径范围为1~4nm,分别在385和402nm处出现强的共振瑞利光散射峰和荧光峰.室温下,荧光量子产率达到10%以上,比其它文献报道的金纳米颗粒的荧光量子产率高2个数量级以上,这一特性使其在潜指纹识别、光催化等方面具有很大的应用潜力.  相似文献   

9.
Yang  Xin  Sui  Laizhi  Wang  Boyang  Zhang  Yongqiang  Tang  Zhiyong  Yang  Bai  Lu  Siyu 《中国科学:化学(英文版)》2021,64(9):1547-1553
Carbon dots(CDs), as a kind of carbon nanomaterials, have attracted widespread attention due to their unique structure and excellent optical properties, and they are low-cost, environmentally friendly and biocompatible. However, the development of near-infrared(NIR) emission CDs remains a challenge. In this study, we successfully prepared CDs with a maximum emission of714 nm using citric acid as the carbon source, thiourea and ammonium fluoride as the dopant source, and N,N-dimethylformamide as the solvent. The quantum yield(QY) is as high as 22.64%. Interestingly, the prepared CDs self-oxidize in the presence of oxygen, resulting in a blue shift of their emission. Therefore, they can be used to prepare white light-emitting diodes(WLEDs) without adding other fluorescent substances. Notably, the work presented herein constitutes the first report of WLEDs preparation from single CDs.  相似文献   

10.
水溶性发光金量子点灵敏检测L-半胱氨酸   总被引:1,自引:1,他引:0  
吴玉芹  陈金龙 《应用化学》2013,30(2):225-231
室温下一步合成了一种蓝色发光金量子点。 该金量子点具有良好的水溶性和生物相容性,金量子点平均粒径为3.0 nm,在波长305 nm光激发下,发射430 nm蓝色荧光。 实验发现,一定量L-半胱氨酸对金量子点430 nm处荧光发射有显著的增强作用,由此可建立一种简单、迅速、灵敏检测L-半胱氨酸的新方法。在最佳条件下,金量子点荧光强度与L-半胱氨酸在0~4.0 μmol/L浓度范围内呈线性关系,线性相关系数R2=0.9976,对2.0 μmol/L L-半胱氨酸的11次测定结果的相对标准偏差(RSD)为2.8%,以3倍标准偏差计算本法对L-半胱氨酸测定的检出限为5 nmol/L。  相似文献   

11.
Pt nanodots were formed on Au nanorods (NRs) by using a simple seed-mediated growth. Their density and distribution on the Au NR can be finely tuned by varying the reaction parameters. At lower Pt/Au ratios, the Pt nanodots mainly appear at endcaps and side edges of the Au rod. At higher Pt/Au ratios, they distribute homogeneously over the whole Au rod. The obtained Pt nanostructure is a single crystal owing to the epitaxial growth of Pt on the Au rod. Due to the unique surface plasmon resonance (SPR) features of the Au NRs, the Au core/Pt shell (Au@Pt) nanostructures also exhibit well-defined and red-shifted longitudinal SPR bands in the visible and near-infrared region. The position and intensity can be regulated by the thickness and amount of the Pt shell. At a thinner Pt thickness, the Au@Pt NRs show higher dielectric sensitivity than the corresponding Au NRs. It thus opens up the potential of Pt nanostructures for SPR-based sensing.  相似文献   

12.
In this Personal Account, we briefly address our journey in developing photoluminescent nanomaterials for sensing purposes, with a focus on gold nanodots (Au NDs). Their synthetic strategies, optical properties, and sensing applications are emphasized. The Au NDs can be simply prepared from the etching of small‐sized Au nanoparticles (<3 nm in diameter) by thiol compounds such as 11‐mercaptoundecanoic acid under alkaline conditions. This simple approach allows the preparation of various functional Au NDs by choosing different thiol compounds as etching agents. Since the optical properties of Au NDs are highly dependent on the core and shell of each Au ND, the selection of etching reagents is important. Over the years we have developed various sensing systems using Au NDs for the detection of metal ions, anions, and proteins, based on analyte‐induced photoluminescence quenching/enhancement of Au NDs as a result of changes in their oxidation state, shell composition, and structure.  相似文献   

13.
In this paper, we examined the characteristic behavior of localized surface plasmon resonances (LSPR) of Au dot and ring arrays in response to the selective binding of biomolecules. To do this, patterned arrays of Au rings and dots with various feature scales were fabricated over large areas by an imprint lithography technique. Our results showed that the LSPR spectra of the Au nanorings exhibited a blue shift with increase in the ring widths and asymptotically converged to those for Au nanodots. This clearly implies that the LSPR spectra can be tuned over an extended wavelength range by varying the ring width. For an illustrative purpose, the patterned Au structures were used to detect the binding of streptavidin to biotin. In doing this, the Au patterns were chemically modified with G4 dendrimers of amine terminated poly(amidoamine), which facilitated the tethering of biotin onto the Au pattern. Exposure of the biotinylated Au nanorings to aqueous streptavidin solution induced both red-shifts of the LSPR spectra and changes in the peak intensities. The sensitivity of the LSPR spectra to the binding of the biomolecules was enhanced as the ring width of Au rings was decreased.  相似文献   

14.
邓祥  黄小梅  祁文静  吴狄 《分析化学》2016,(12):1880-1886
以玛卡为碳源,采用水热法制备荧光碳点。碳点水溶液在激发波长为315 nm时,最大荧光发射波长为425 nm。在玛卡荧光碳点的磷酸盐缓冲液(0.2 mol/L,pH 5.8)中,加入苦味酸,其荧光被猝灭,基于此建立了以玛卡荧光碳点为荧光探针测定苦味酸的方法。本方法检测苦味酸的线性范围为0.4~80 mmol/L,相关系数为0.9978,检出限为110 nmol/L(S/N=3),本方法线性范围宽、灵敏度高、响应快(2 min内),选择性和抗干扰能力良好。用于实际水样中苦味酸的检测,加标回收率为92.0%~110.0%,结果令人满意。  相似文献   

15.
A reduced graphene (RG)‐Au nanoparticle composite film is successfully fabricated by electrophoretic deposition and used as counter electrode for quantum dot‐sensitized solar cells. The RG‐Au composite is prepared by one‐step microwave‐assisted reduction of chloroaurate in alkaline solution with graphite oxide dispersion. Under one sun illumination (AM 1.5 G, 100 mW cm?2), the cell with a RG‐Au counter electrode shows an energy conversion efficiency of 1.36 %, which is higher than those of cells employing conventional Pt or Au counter electrodes, due to the superior combination of highly catalytic Au nanoparticles and the conductive graphene network structure.  相似文献   

16.
For bone regenerative engineering,it is a promising method to form skeletal tissues differentiating from human bone morrow mesenchyme stem cells(hBMSCs).However,it is still a critical challenge to efficiently control ostogenesis and clearly reveal the influence factor.To this end,the fluorescent gold nanodots(Au NDs) with highly negative charges as osteogenic induction reagent are successfully synthesized,which display better than commercial osteogenic induction medium through the investigations of ALP activity(2.5 folds) and cytoskeleton staining(1.5 folds).Two kinds of oligopeptides with different bio-structures(cysteine,Cys and glutathione,GSH) are selected for providing surficial charges on Au NDs.It is revealed that Au-Cys with more negative charges(-51 mV) play better role than Au-GSH(-19 mV) in osteogenic differentiation,when both of them have same size(~2 nm),sphere shape and show similar cell uptake amount.To explore deeply,osteogenesis related signaling pathways are monitored,revealing that the enhancement of osteogenic differentiation was through autophagy signaling pathway triggered by Au-Cys.And the promotion of highly negative charges in osteogenic diffe rentiation was further proved via sliver nanodots(Ag NDs,Ag-Cys and Ag-GSH) and carbon nanodots(CDs,Cys-CDs and GSH-CDs).This work indicates part of insights during hBMSCs differentiation and provides a novel strategy in osteogenic differentiation process.  相似文献   

17.
Polyethyleneimine (PEI) is a cationic polymer with a lot of amino groups in its molecular structure that is secure, sterile, and biocompatible. However, it is difficult for PEI molecules to be directly applied in electroanalysis due to their poor electroactivity. Herein, the PEI-based carbonized polymer nanodots (CPDs) with core-shell structure were prepared by hydrothermal method using PEI as the precursors. The results showed that the as-prepared PEI-based CPDs can not only exhibit the unique properties of carbon nanodots but also inherit the properties of PEI. Subsequently, based on the strong coordination interaction between the abundant amino groups on the surface of PEI and silver ions, the electroactive Ag@carbonized polymer dots (Ag@CPDs) were prepared. Furthermore, to investigate the electrochemical behaviors and application of Ag@CPDs, the DNA molecule (double-stranded and single-stranded DNA) was taken as an example. It was found that the interaction of DNA with Ag@CPDs had a significant influence on the current intensity of Ag@CPDs. Based on this phenomenon, a sensitive electrochemical technique for miRNA detection was established and effectively employed to detect miRNA in human serum samples based on the discriminating effect of Ag@CPDs towards ssDNA probes and ssDNA probe/miRNA complex (dsDNA).  相似文献   

18.
《Electroanalysis》2018,30(1):57-66
Efficient, stable, and low‐cost electrocatalysts for the degradation and sensing of environment pollutants are essential components of clean environment monitoring. Here we report, one‐step synthesis and characterization of 1–3 nm diameter sized bi‐metallic AuAg nanodots (NDs) embedded in amine functionalized silicate sol‐gel matrix (SSG) and its electrochemical studies toward nitrobenzene. The SSG was used as a reducing agent as well as stabilizer for the prepared mono‐ and bi‐metallic nanoparticles (NPs). From the HRTEM, STEM‐EDS and XPS analyses, the bi‐metallic AuAg NDs were identified as an alloy and not the mixtures of Au and Ag NPs. Characteristic surface plasmon resonance (SPR) band between the Au and Ag NPs SPR absorption region was noticed for the prepared AuAg NDs. The AuAg alloy NDs with different concentrations of Au and Ag (Au25Ag75, Au50Ag50 and Au75Ag25 NDs) modified electrodes exhibited synergistic electrocatalytic effect than did the Au and Ag NPs towards nitrobenzene reduction and detection. Together with ultra‐small size and exceptional colloidal stability features within these SSG‐AuAg NDs pave convenient way for nanotechnology‐based catalysts development and sensor applications.  相似文献   

19.
通过一种简易的方法,利用D-半乳糖胺和氯金酸制备出了能够用于肝癌细胞靶向识别的Au纳米颗粒探针.该纳米颗粒形貌和尺寸均一并且生物相容性良好.通过改变反应体系的pH能够对Au纳米颗粒的尺寸进行调控.此外,这种新型的纳米颗粒对RCA120还具有超高的检测灵敏度,实验结果显示其检测限度可以达到2μg·L^-1.  相似文献   

20.
Three kinds of cluster-based materials are prepared by evaporation and inert gas condensation method. Their structures and properties are examined by transmission electron microscopy, Raman scattering, STM/STS, optical spectroscopy, etc. Some important results are obtained: (1) surface phonon modes of quasi-free Si clusters are observed when Si clusters softly land onto the mother skeleton of the porous silicon and/or through grazing angle collisions with the walls of the pores; (2) very sharp peaks of conductance resonances are obtained when the STM tip is right on the top of the Au cluster deposited on the H-terminated silicon crystal; and (3) large blue shifts and photoluminescence from violet to orange with main peaks in the blue range are observed from Ge cluster-based nanofilms at an excitation wavelength of 370 nm. Mechanisms are discussed including the quantum confinement effect of the Ge cluster cores, radiation transition from oxygen difficiency centers in the oxide surface layers, and exciton confinement in the interfacial layers between the crystalline cores and the oxide shells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号