首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A three-dimensional photoelastic analysis using the stress freezing and slicing techniques was employed to study the stress distribution and the stress-concentration factors around an elliptical hole in a plate of finite thickness. The plate was subjected to simple out-of-plane bending. A special bending device was designed to produce uniform bending moment at the two opposite free edges of the plate. Six plates with various elliptical holes were studied. The stress variation across the plate thickness at the periphery of the elliptical hole was also investigated. The experimental results were correlated with the existing theoretical solutions.  相似文献   

2.
在分析正交异性钢桥面板构造特点的基础上,将轮载影响范围内的桥面板简化为弹性支撑的平面框架,建立了正交异性钢桥面轮载横向效应的解析分析模型,推导了纵肋弹性支撑刚度和车轮荷载集度等效计算方法,提出了桥面板与U肋交接位置处横向弯曲应力的解析公式,讨论并明确了影响桥面板横向弯曲应力峰值的关键敏感影响因素,并以某钢箱梁为例证明了本文算法的合理性。研究发现,本文方法计算得到桥面板与U肋相交位置的横向应力值与有限元结果相差不超过10%,证实了本文算法的正确性,也为正交异性钢桥面的初步设计提供了极大的方便;正交异性钢桥面板的横向轮载应力随U肋厚度和高度增加而增大,但随顶板厚度和横隔板间距增大而减小;相对而言,顶板内横向拉应力受顶板厚度的影响最为显著,对腹板倾角和U肋腹板厚度的变化并不敏感。  相似文献   

3.
本文首次应用随机有限元法研究了具有随机参数的含裂纹板裂纹尖端弯曲应力强度因子的统计性质。文中首先给出了杂交模式的裂纹尖端奇异单元的刚度矩阵,然后基于随机场的局部平均理论和一阶泰勒展开得到了应力强度因子均值和方差的计算公式。作为数例,详细讨论了杨氏模量、泊松比及板厚度的不确定性对应力强度因子的影响。  相似文献   

4.
The variation of stress intensity factor along the thickness in a cracked transversely graded plate subjected to in plane bending is investigated in this study. A transversely graded plate having elastic modulus varying continuously along the thickness was prepared by embedding glass beads in epoxy resin. An edge crack in this plate was subjected to in plane bending and the crack tip displacement field on the surfaces of the plate was measured using digital image correlation (DIC). Using the recently reported asymptotic displacement fields for cracked transversely graded plates (Wadgaonkar, S.C., Parameswaran, V., 2009. Structure of near tip stress field and variation of stress intensity factor for a crack in a transversely graded material, Journal of Applied Mechanics 76 (1), 011014), the stress intensity factor (SIF) on the surfaces of the plate was calculated from the experimental data. The results of this part of the study indicated that the extent of variation of the SIF across the plate thickness is nearly the same as that of the elastic modulus. An expression to calculate the variation of the SIF through the plate thickness was developed assuming simple bending of the plate. The predicted variation of SIF was verified through finite element calculations. Further, the behavior of the SIF near the intersection of the crack front and the plate surfaces, the extent of dominance of the corner singular field and the exponent of the corner singularity were also investigated in detail. Finally, the effect of gradation strength and gradation type on the SIF was also studied.  相似文献   

5.
Validating stress intensity factor solutions for combined tension and bending is an arduous task because the necessary experimental data are not readily available. Toward this end, a tension and bending test specimen was designed to produce controllable levels of both tension stress and bending stress at the crack location. The specimen was made from 2024-T3 clad aluminum, which is commonly used in aircraft structures. The need for testing multiple specimens of various geometries and stress levels prompted the development of an analytical tool for specimen design. An extention of the Schijve line model, based on simple beam theory, was developed to calculate the stress distributions of tension and bending through the length of the specimen. A comparison of measured static strain levels with those predicted by the model showed the model to be accurate to within 5 percent, confirming its efficacy for specimen design. As expected, for the same remote stress (100 MPa), cracks in the tension and bending specimens grew faster than those in middle-cracked tension specimens.  相似文献   

6.
The present study proposes a nonclassical Kirchhoff plate model for the axisymmetrically nonlinear bending analysis of circular microplates under uniformly distributed transverse loads. The governing differential equations are derived from the principle of minimum total potential energy based on the modified couple stress theory and von Kármán geometrically nonlinear theory in terms of the deflection and radial membrane force, with only one material length scale parameter to capture the size-dependent behavior. The governing equations are firstly discretized to a set of nonlinear algebraic equations by the orthogonal collocation point method, and then solved numerically by the Newton–Raphson iteration method to obtain the size-dependent solutions for deflections and radial membrane forces. The influences of length scale parameter on the bending behaviors of microplates are discussed in detail for immovable clamped and simply supported edge conditions. The numerical results indicate that the microplates modeled by the modified couple stress theory causes more stiffness than modeled by the classical continuum plate theory, such that for plates with small thickness to material length scale ratio, the difference between the results of these two theories is significantly large, but it becomes decreasing or even diminishing with increasing thickness to length scale ratio.  相似文献   

7.
具有随机参数的含裂纹板弯曲应力强度因子的统计分析   总被引:2,自引:0,他引:2  
本文首次应用随机有限元法研究了具有随机参数的含裂纹板裂纹尖端弯曲应力强度因子的统计性质。文中首先给出了杂交模式的裂纹尖端奇异单元的刚度矩阵,然后基于随机场的局部平均理论和一阶泰勒展开得到了应力强度因子均值和方差的计算公式。作为数例,详细讨论了杨氏模量、泊松比及板厚度的不确定性对应力强度因子的影响。  相似文献   

8.
采用有限元方法,分析了压电薄板板边不同长度导电裂纹尖端的力电场分布规律,发现导电裂纹尖端的应力场和电场强度存在明显的集中和奇异现象,集中和奇异的程度与裂纹长度有关。而且,在裂纹延长线上分别存在两点,这里的应力和电场对裂纹长度不太敏感,总等于无裂纹时薄板的均匀应力和均匀电场强度;同时,还研究了导电裂纹尖端的应力强度因子和电场强度因子对裂纹长度的依赖关系,发现在线性本构的前提下,导电裂纹尖端的应力强度因子与电场强度因子之间具有近似的线性关系。  相似文献   

9.
Stress concentrations in thin-plate configurations commonly used in fatigue bending tests were determined by photoelastic means. The test configurations were rectangular and tapered plates with a centrally located hole. These configurations were machined from plates constructed by cementing together two sheets of similar photoelastic material. A reflective-type cement was used. In this manner, photoelastic measurements for the bending case were indicative of the average between maximum fiber stress and the stress at the reflective surface. The maximum fiber stress was then computed assuming that plane sections remain plane. Although bending was of primary concern, tension tests were also performed. The measured stress concentrations are compared with available analytical solutions. In the case of bending, the results are compared with infinite-plate solutions since the perforated finite-width plate bending problem has not been solved.  相似文献   

10.
曾政  苗张木  吴南 《力学季刊》2016,37(4):755-762
对于裂纹尖端张开位移(CTOD)试验,焊缝试样中预制疲劳裂纹前沿平直度直接影响了试样制备的合格率,是试验的关键难题之一.试验中常对试样进行预处理以提高裂纹前沿平直度,但由此也使试验结果与实际情况产生一定差异.本文深入研究规范BS7448: Part2中对焊缝试样取样方向的规定,对表面开缺口试样裂纹尖端焊接残余应力进行分析,运用大型有限元软件ANSYS模拟90mm厚钢板焊接过程,求解了横向残余应力沿板厚方向及焊缝方向的分布规律,研究出横向残余应力分布是影响焊缝试样预制裂纹前沿平直度的主要原因,并通过试验进行验证.试验结果表明,表面开缺口试样可不经过局部韧带压缩等预处理而得到合格的裂纹前沿平直度,试验不改变原焊缝残余应力,可测得更加接近焊缝实际情况的CTOD韧度值,给CTOD试验中合理选取焊缝试样取样方向提供了新思路.  相似文献   

11.
This study presents a semi-analytical solution method to analyze the geometrically nonlinear response of bonded composite lap joints with tapered and/or non tapered adherend edges under uniaxial tension. The solution method provides the transverse shear and normal stresses in the adhesives and in-plane stress resultants and bending moments in the adherends. The method utilizes the principle of virtual work in conjunction with von Karman’s nonlinear plate theory to model the adherends and the shear lag model to represent the kinematics of the thin adhesive layers between the adherends. Furthermore, the method accounts for the bilinear elastic material behavior of the adhesive while maintaining a linear stress–strain relationship in the adherends. In order to account for the stiffness changes due to thickness variation of the adherends along the tapered edges, the in-plane and bending stiffness matrices of the adherents are varied as a function of thickness along the tapered region. The combination of these complexities results in a system of nonlinear governing equilibrium equations. This approach represents a computationally efficient alternative to finite element method. The numerical results present the effects of taper angle, adherend overlap length, and the bilinear adhesive material on the stress fields in the adherends, as well as the adhesives of a single- and double-lap joint.  相似文献   

12.
We use the geometric elasticity equations [1], which permit relating the medium stress state to the geometry of the Riemannian space generated by the stresses, to consider the plane problem of stress concentration near a circular hole in a thin unbounded plate loaded by normal and tangential stresses. The Riemannian space metric coefficient corresponding to the coordinate normal to the plate plane is treated as the variable thickness of the plate in three-dimensional Euclidean space, which determines the optimal law for the plate material distribution. We consider plates in uniaxial tension, biaxial tension, and shear. For the plate with thickness variation laws thus obtained, we construct direct numerical solutions of the corresponding classical elasticity problems and determine the stress concentration factors.  相似文献   

13.
Neutron diffraction measurements have been performed to determine the full residual stress tensor along the expected crack path in an austenitic stainless steel (Esshete 1250) compact tension weld specimen. A destructive slitting method was then implemented on the same specimen to measure the stress intensity factor profile associated with the residual stress field as a function of crack length. Finally deformations of the cut surfaces were measured to determine a contour map of the residual stresses in the specimen prior to the cut. The distributions of transverse residual stress measured by the three techniques are in close agreement. A peak tensile stress in excess of 600 MPa was found to be associated with an electron beam weld used to attach an extension piece to the test sample, which had been extracted from a pipe manual metal arc butt weld. The neutron diffraction measurements show that exceptionally high residual stress triaxiality is present at crack depths likely to be used for creep crack growth testing and where a peak stress intensity factor of 35 MPa√m was measured (crack depth of 21 mm). The neutron diffraction measurements identified maximum values of shear stress in the order of 50 MPa and showed that the principal stress directions were aligned to within ~20° of the specimen orthogonal axes. Furthermore it was confirmed that measurement of strains by neutron diffraction in just the three specimen orthogonal directions would have been sufficient to provide a reasonably accurate characterisation of the stress state in welded CT specimens.  相似文献   

14.
The elastic stress and strain fields of finite thickness large plate containing a hole are systematically investigated using 3D finite element method. It is found that the stress and strain concentration factors of the finite thickness plate are different even if the plate is in elasticity state except at notch root of plate surface. The maximum stress and strain do not always occur on the mid plane of plate. They occur on the mid plane only in thin plate. The maximum stress and strain concentration factors are not on mid plane and the locations of maximum stress and strain concentration factors are different in thick plate. The maximum stress and strain concentration factors of notch root increase from their plane stress value to their peak values, then decrease gradually with increasing thickness and tend to each constant related to Poisson’s ratio of plate, respectively. The stress and strain concentration factors at notch root of plate surface are the same and are the monotonic descent functions of thickness. Their values decrease rapidly and tend to each constant related to Poisson’s ratio with plate thickness increasing. The difference between maximum and surface value of stress concentration factor is a monotonic ascent function of thickness. The thicker the plate is or the larger the Poisson’s ratio is, the larger the difference is. The corresponding difference of strain concentration factor is similar to the one of stress concentration factor. But the difference magnitude of stress concentration factor is larger than that of strain concentration factor in same plate.  相似文献   

15.
A size-dependent Kirchhoff micro-plate model is developed based on the strain gradient elasticity theory. The model contains three material length scale parameters, which may effectively capture the size effect. The model can also degenerate into the modified couple stress plate model or the classical plate model, if two or all of the material length scale parameters are taken to be zero. The static bending, instability and free vibration problems of a rectangular micro-plate with all edges simple supported are carried out to illustrate the applicability of the present size-dependent model. The results are compared with the reduced models. The present model can predict prominent size-dependent normalized stiffness, buckling load, and natural frequency with the reduction of structural size, especially when the plate thickness is on the same order of the material length scale parameter.  相似文献   

16.
In order to reduce the stress concentration around a hole in a plate, new, “analogue” reinforcements instead of reinforcing rings were used in this investigation. In two of these specimens, reinforcements with different volume fractions were arranged to coincide with the stress trajectories for an infinite plate with a hole under uniaxial tension. Two other specimens containing straight rectangular-grid-type reinforcements were made by using a photofabrication method. Specimens were then prepared by sandwiching these reinforcements between two epoxy-resin plates. Plane specimens, i.e., without reinforcement, were also made of the same epoxy resin for comparison. The stress concentrations at the edge of the hole under uniaxial tension were determined by photoelastic techniques. The measured stress-concentration factors were compared with well-known values for an infinite, isotropic, homogeneous plate containing a hole. Results were also compared with published data on [90/0/90/0]s 7-ply laminated composite plates, and on plates strengthened with reinforcing rings. A definite reduction in stress concentration was observed on specimens containing analogue reinforcement.  相似文献   

17.
有限厚度板穿透裂纹前缘附近三维弹性应力场分析   总被引:7,自引:1,他引:7  
通过三维有限元计算来研究有限宽度、有限厚度含有穿透裂纹板的裂纹前缘应力场,从中找出应力强度因子与板的厚度、裂纹长度之间的关系,同时还分析了裂尖的三维约束程度和三维约束区的大小。分析结果表明:应力强度因子沿厚度的分布是不均匀的,应力强度因子的最大值及其位置与厚度有关;有限厚度板中面应力强度因子(KI)m-p及最大应力强度因子(KI)max均大于平面应力或平面应变的应力强度因子。对有限厚度裂纹问题,按平面应力或平面应变来考虑是不安全的;板中面的应力强度因子(KI)m-p及最大应力强度因子(KI)max是厚度B/a的函数;板的中面离面约束系数Tx最大,自由面(z=B)Tx=0。沿厚度方向裂尖附近的离面约束系数Tx也是z/B和B/a的函数,随着厚度的增加离面约束系数Tx增大,离中面越近离面约束系数Tx越大。Tx随着x的增大急剧减小,三维约束影响区域大小大约为板厚的一半,且裂纹长度a/W对应力强度因子沿厚度变化规律及Tx影响区域大小影响较小。  相似文献   

18.
In this paper, the coupling effect of extension and bending in functionally graded plate subjected to transverse loading for Kirchhoff-Love plate theory equations is studied. The material properties of the FG plates are assumed to vary continuously throughout the thickness direction of the layer according to sigmoid distribution of the volume fractions of constituents. The two plate functionals are used which are developed by Gateaux differential and potential operator concept. A layer wise, isoparametric, mixed finite element approach was used and results of two different quadrilateral elements, one considering the membrane forces and the other one not, were compared by an analytical study. Finally, for different composition profiles the effect of variations of the Young’s moduli and of variations volume fraction index to dimensionless displacement, strain and stress values are studied.  相似文献   

19.
A stress resultant constitutive law in rate form is constructed for power-law hardening materials. The change of plate thickness is considered in the constitutive law. The elastic-plastic behavior of a plate element based on the stress resultant constitutive law under uniaxial combined tension and bending is determined under a limited number of nonproportional and unloading paths. The results based on the stress resultant constitutive law and the through-the-thickness integration method are compared within the context of both the small-strain and finite deformation approaches. The results indicate that the selection of the normalized equivalent stress resultant and the corresponding work-conjugate normalized equivalent generalized strain is appropriate for describing the hardening behavior in the stress resultant space. However, the hardening rule in a power law form must be modified for low hardening materials at large plastic deformation when finite deformation effects are considered.  相似文献   

20.
An experimental stress analysis of machine components with complex shape, which are usually used in agriculture machines, is described. Brittle-coating and its precision-inductance strain gages were employed to determine stress distributions over the outer surface of specimens when they are subjected to bending. Particular emphasis was placed on determining stress concentrations as affected by weld arrangement in the components investigated. Strain measurement enables the determination of the stress gradient and the ratio of stress gradient to the maximum stress at the location of highest stress level of the structural components investigated. Based upon the results of this study, an attempt was made to classify components with respect to fatigue behavior using the fatigue-stress-concentration approach. In this context, an analytical model was developed for calculation of the combined-fatigue-stress concentration factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号