首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibrational relaxation cross sections of the H(2)O(upsilon(2) = 1) bending mode by H(2) molecules are calculated on a recent high-accuracy ab initio potential-energy surface using quasiclassical trajectory calculations. The role of molecular rotation is investigated at a collisional energy of 3500 cm(-1) and it is shown that initial rotational excitation significantly enhances the total (rotationally summed) vibrational relaxation cross sections. A strong and complex dependence on the orientation of the water angular momentum is also observed, suggesting the key role played by the asymmetry of water. Despite the intrinsic limitations of classical mechanics, these exploratory results suggest that quantum approximations based on a complete decoupling of rotation and vibration, such as the widely used vibrational close-coupling (rotational) infinite-order-sudden method, would significantly underestimate rovibrationally inelastic cross sections. We also present some rationale for the absence of dynamical chaos in the scattering process.  相似文献   

2.
Raman and FTIR spectra of 2-phenyl-4-(4-methoxy benzylidene)-2-oxazolin-5-one were recorded in the regions, 100-3300 and 400-4000 cm(-1), respectively. Vibrational frequencies and intensities of the fundamental modes of this hetrocyclic organic molecule were computed using ab initio as well as AM1 semiempirical molecular orbital methods. Ab initio calculations were carried out with basis set up to RHF/6-311G. Conformational studies regarding the effect of moving the methoxy group in the 2-phenyl-4-(4-methoxy benzylidene)-2-oxazolin-5-one molecule to a different position on the ring was also carried out. Observed vibrational wavenumbers were found to be mostly consistent with ab initio values. The most intense mode of vibration observed at 1250 cm(-1) in Raman spectra, also observed as a strong band in FTIR, was assigned as C-O stretching vibration in the methoxy group. Asymmetric stretching vibrations between CC and CN bonds was predicted as most intense mode by our ab initio calculation.  相似文献   

3.
The hyperspherical method is a widely used and successful approach for the quantum treatment of elementary chemical processes. It has been mostly applied to three-atomic systems, and current progress is here outlined concerning the basic theoretical framework for the extension to four-body bound state and reactive scattering problems. Although most applications only exploit the advantages of the hyperspherical coordinate systems for the formulation of the few-body problem, the full power of the technique implies representations explicitly involving quantum hyperangular momentum operators as dynamical quantities and hyperspherical harmonics as basis functions. In terms of discrete analogues of these harmonics one has a universal representation for the kinetic energy and a diagonal representation for the potential (hyperquantization algorithm). Very recently, advances have been made on the use of the approach in classical dynamics, provided that a hyperspherical formulation is given based on “classical” definitions of the hyperangular momenta and related quantities. The aim of the present paper is to offer a retrospective and prospective view of the hyperspherical methods both in quantum and classical dynamics. Specifically, regarding the general quantum hyperspherical approaches for three- and four-body systems, we first focus on the basis set issue, and then we present developments on the classical formulation that has led to applications involving the implementations of hyperspherical techniques for classical molecular dynamics simulations of simple nanoaggregates.  相似文献   

4.
《Chemical physics letters》1986,127(5):456-461
The central force model for a water molecule is corrected by adding a three-body term. The present potential fits both an accurate ab initio potential energy surface and the fundamental vibrational frequencies of gas-phase water. The three-body terms allow us to reproduce the gas-phase IR spectrum by molecular dynamics simulations. Some problems connected with MD simulations of IR spectra are discussed.  相似文献   

5.
An accurate theoretical prediction of the vibrational spectra for a pure nitrogen ring (cyclic-N(3)) molecule is obtained up to the energy of the (2)A(2)/(2)B(1) conical intersection. A coupled-channel approach using the hyperspherical coordinates and the recently published ab initio potential energy surface [D. Babikov, P. Zhang, and K. Morokuma, J. Chem. Phys. 121, 6743 (2004)] is employed. Two independent sets of calculations are reported: In the first set, the standard Born-Oppenheimer approximation is used and the geometric phase effects are totally neglected. In the second set, the generalized Born-Oppenhimer approximation is used and the geometric phase effects due to the D(3h) conical intersection are accurately treated. All vibrational states are analyzed and assigned in terms of the normal vibration mode quantum numbers. The magnitude of the geometric phase effect is determined for each state. One important finding is an unusually large magnitude of the geometric phase effects in the cyclic-N(3): it is approximately 100 cm(-1) for the low-lying vibrational states and exceeds 600 cm(-1) for several upper states. On average, this is almost two orders of magnitude larger than in the previously reported studies. This unique example suggests a favorable path to experimental validation.  相似文献   

6.
The vibrational spectra of benzofuran and some of its derivatives have been systematically investigated by ab initio and density functional B3LYP methods. The harmonic vibrational wavenumbers and intensity of vibrational bands were calculated at ab initio and DFT levels invoking different basis sets up to 6-311++g**. Vibrational assignments have been made and it has been found that the calculated DFT frequencies agree well in most cases with the observed frequencies for each molecule. Conformational studies have also been carried out and it is evident from ab initio calculations that 2(3H) benzofuranone is more stable than 3(2H) benzofuranone in support to our earlier semiempirical results.  相似文献   

7.
State-resolved differential cross sections, total and integral cross sections, average vibrational energy transfer, and the relative probabilities are computed for the H(+)+H2 system using the newly obtained ab initio potential energy surfaces at the full CI/cc-pVQZ level of accuracy which allow for both the direct vibrational inelastic and the charge transfer processes. The quantum dynamics is treated within the vibrational close-coupling infinite-order-sudden approximation approach using the two ab initio quasidiabatic potential energy surfaces. The computed collision attributes for both the processes are compared with the available state-to-state scattering experiments at E(c.m.)=20 eV. The results are in overall good agreement with most of the observed scattering features such as rainbow positions, integral cross sections, and relative vibrational energy transfers. A comparison with the earlier theoretical study carried out on the semiempirical surfaces (diatomics in molecules) is also made to illustrate the reliability of the potential energy surfaces used in the present work.  相似文献   

8.
Lakin NM  Olkhov RV  Dopfer O 《Faraday discussions》2001,(118):455-76; discussion 487-503
The intermolecular potential energy surfaces for the electronic ground states of the ammonium ion-rare gas dimers NH4(+)-He and NH4(+)-Ne are calculated at the MP2 and CCSD(T)/aug-cc-pVXZ (X = D/T/Q) levels of theory. The global minima of both potentials correspond to proton (vertex)-bound structures, Re = 3.13 A, De = 171 cm-1 (He) and Re = 3.21 A, De = 302 cm-1 (Ne). The face- and edge-bound structures are local minima and transition states for the internal rotation dynamics, corresponding to barriers of approximately 20 (He) and 50 cm-1 (Ne). The ab initio potentials are employed in numerical solutions to the rotation-intermolecular vibration Hamiltonian to determine the term values and the rotational and distortion constants for the lowest bound levels in the intramolecular ground vibrational state of both complexes. The results are used to assess the accuracy of two-dimensional (fixed-R) representations of the potentials for determining the internal rotor levels in the ground and nu 3 vibrational states. This model is employed to produce simulations of the IR nu 3 transitions, which are compared to the experimental spectra recorded using photofragmentation spectroscopy. In the case of NH4(+)-Ne the potential parameters are least-squares fitted to the experimental spectrum. The trends within the NH4(+)-Rg series (Rg = He, Ne, Ar) revealed by both the IR spectra and theoretical calculations are discussed.  相似文献   

9.
A high-level ab initio study has been performed on the conformational structure and vibrational spectra of HO(2)NO(2). Calculations carried out with coupled-cluster methods using a series of Pople and Dunning basis sets reveal that there is a significant basis set dependence on the predicted ab initio structure. Higher angular momentum basis sets are shown to be necessary in order to bring the calculated structure into agreement with experimental rotational constants. Harmonic vibrational frequencies of HO(2)NO(2) are computed at the CCSD(T)/aug-cc-pVTZ level of theory while the corresponding vibrational anharmonicities are calculated at the MP2/cc-pVTZ level. In addition, the absorption cross sections of OH stretching overtones in HO(2)NO(2) are calculated using a dipole function computed at the QCISD level of theory and found to be in good agreement with the available experimental data.  相似文献   

10.
As a special substance between isolated molecules and condensed phase, clusters have drawn more and more attention by theoreticians and experimentalists. The protonated rare gas cluster is one kind of simplest clusters, which can be looked on as the simplest solution composed of the simplest solute, proton, and the simplest solvent, rare gas. The study on such a system can help us to know more about the complex condensed matter. However, the information for the molecular properties of protonat…  相似文献   

11.
The theory of vibrations of a composite particle when vibrational amplitudes are not constrained to be small according to the Eckart conditions is developed using the methods of differential topology. A global classical Hamiltonian appropriate for this system is given, and for the case of the molecular vibration–rotation problem, it is transformed into a global quantum Hamiltonian operator. It is shown that the zeroth-order term in the global Hamiltonian operator is identical to the Wilson–Howard Hamiltonian; higher-order terms are shown to give successively better approximations to the large amplitude problem. Generalized Eckart conditions are derived for the global classical Hamiltonian; the quantum equivalent of these conditions along with the quantum equivalent of the Eckart conditions are given. The spectrum of the global Hamiltonian operator is discussed and it is shown that the calculation of the vibration–rotation energy states of the system reduces to the same straight-forward procedure, the solution of a secular determinant, as was carried out for the Wilson–Howard Hamiltonian at a later time by Nielsen.  相似文献   

12.
We report the first observation of the predissociative B state of a halocarbene molecule. Rovibronic energy levels were measured in the B(1A') state of CHF by fluorescence dip detected optical-optical double resonance spectroscopy via the A state. The origin was found to lie 30 817.4 cm-1 above the zero point level of the X state. Rotational transitions within six purely bending states, and states involving one or two quanta of CF-stretch were observed, including the vibrational angular momentum components. Interpretation of the spectrum, with support of ab initio calculations, shows that CHF is quasilinear in the B state with a small (-200 cm-1) barrier to linearity which lies below the zero-point level. The rotational constant, B=1.04 to 1.09 cm-1, depending on vibrational state, again in good agreement with theory. All observed B state levels were predissociative, as evidenced by Lorentzian line broadening. Linewidths varied with initial state from 0.7-10.8 cm-1, corresponding to excited state lifetimes of 0.5-8 ps.  相似文献   

13.
We report here a measurement of electric dipole moments in highly vibrationally excited HDO molecules. We use photofragment yield detected quantum beat spectroscopy to determine electric field induced splittings of the J=1 rotational levels of HDO excited with 4, 5, and 8 quanta of vibration in the OH stretching mode. The splittings allow us to deduce mua and mub, the projections of dipole moment onto the molecular rotation inertial axes. We compare the measured HDO dipole moment components with the results of quantitative calculations based on Morse oscillator wave functions and an ab initio dipole moment surface. The vibrational dependence of the dipole moment components reflect both structural and electronic changes in HDO upon vibrational excitation; principally the vibrational dependence of the O-H bond length and bond angle, and the resulting change in orientation of the principal inertial coordinate system. The dipole moment data also provide a sensitive test of theoretical dipole moment and potential energy surfaces, particularly for molecular configurations far from equilibrium.  相似文献   

14.
Molecular dynamics simulations and both normal mode and hyperspherical mode analyses of NO-doped Kr solid are carried out in order to get insights into the structural relaxation of the medium upon electronic excitation of the NO molecule. A combined study is reported on the time evolution of the cage radius and on the density of vibrational states, according to the hyperspherical and normal mode analyses. For the hyperspherical modes, hyper-radial and grand angular contributions are considered. For the normal modes, radial and tangential contributions are examined. Results show that the first shell radius dynamics is driven by modes with frequencies at approximately 47 and approximately 15 cm-1. The first one is related to the ultrafast regime where a large part of the energy is transmitted to the lattice and the second one to relaxation and slow redistribution of the energy. The density of vibrational states gamma(omega) is characterized by a broad distribution of bands peaking around the frequencies of approximately 13, approximately 19, approximately 25, approximately 31, approximately 37, approximately 47, and approximately 103 cm-1 (very small band). The dominant modes in the relaxation process were at 14.89, 23.49, and 53.78 cm-1; they present the largest amplitudes and the greatest energy contributions. The mode at 14.89 cm-1 is present in both the fit of the first shell radius and in the hyper-radial kinetic energy spectrum and resulted the one with the largest amplitude, although could not be revealed by the total kinetic energy power spectrum.  相似文献   

15.
The role of anharmonic effects in the vibrational spectroscopy of the dark state and two major chromophore intermediates of the photoactive yellow protein (PYP) photocycle is examined via ab initio vibrational self-consistent field (VSCF) calculations and time-resolved resonance Raman spectroscopy. For the first time, anharmonicity is considered explicitly in calculating the vibrational spectra of an ensemble consisting of the PYP chromophore surrounded by model compounds used as mimics of the important active-site residues. Predictions of vibrational frequencies on an ab initio corrected semiempirical potential energy surface show remarkable agreement with experimental frequencies for all three states, thus shedding light on the potential along the reaction path. For example, calculated frequencies for vibrational modes of the red-shifted intermediate, PYPL, exhibit an overall average error of 0.82% from experiment. Upon analysis of anharmonicity patterns in the PYP modes we observe a decrease in anharmonicity in the C8-C9 stretching mode nu29 (trans-cis isomerization marker mode) with the onset of the cis configuration in PYPL. This can be attributed to the loss of the hydrogen-bonding character of the adjacent C9-O2 to the methylamine (Cys69 backbone). For several of the modes, the anharmonicity is mostly due to mode-mode coupling, while for others it is mostly intrinsic. This study shows the importance of the inclusion of anharmonicity in theoretical spectroscopic calculations, and the sensitivity of experiments to anharmonicity. The characterization of protein active-site residues by small molecular mimics provides an acceptable chemical structural representation for biomolecular spectroscopy calculations.  相似文献   

16.
A converged quantum wave packet study is presented for the unimolecular reaction HOOH → OH+OH induced by the fifth OH-overtone excitation employing an ab initio potential energy surface. All six internal vibrational degrees of freedom are explicitly represented in this simulation for total angular momentum zero. It is found that the decay of the survival probability and of the autocorrelation function is non-exponential and that the long time dynamics is likely due to the superposition of a number of resonance states. The simulated overtone spectrum and rotational product distribution is in good agreement with experimental measurements. It is concluded that: (1) the reaction dynamics is non-statistical on a 30 ps timescale, (2) the observed line width is roughly a factor of 1.7 larger than implied by the reactive lifetimes suggesting that a significant portion of the linewidth is due to intramolecular vibrational energy relaxation, and (3) the quantum reaction rate is suppressed by about a factor of two relative to its classical counterpart.  相似文献   

17.
An ab initio potential energy surface (PES) of ArF2 system has been obtained by using MP4 calculation with a large basis set including bond functions. There are two local minimums on the PES: one is T-shaped and the other is L-shaped. The L-shaped minimum is the global minimum with a well depth of -119.62 cm- 1 at R = 0.3883nm. The T-shaped minimum has a well depth of -85.93cm -1 at R = 0.3486 nm. A saddle point is found at R = 0.3486 and θ = 61° with the well depth of -61.53 cm-1. The vibrational energy levels have been calculated by using VSCF-CI method. The results show that this PES supports 27 vibrational bound states, and the ground states are two degenerate states assigned to the L-type vibration.  相似文献   

18.
We report a full-dimensional potential energy surface for H3O2-, based on fitting 66,965 ab initio electronic energies. A major feature of this potential is a barrier of roughly 200 cm-1 to internal rotation of the two hydroxyl groups about a line connecting the two oxygen atoms and the bridging hydrogen atom. The potential is used in calculations of vibrational energies, performed with the "Reaction Path" version of the code "MULTIMODE". The results are compared to recent infrared messenger experiments and are used to propose interpretations of the experimental results.  相似文献   

19.
This paper deals with computational modeling of structure and properties of the silicon nitride surface zone using combined computational and real experiments. The computational experiment implies quantum chemical calculations of structure and vibrational spectra of polyatomic clusters. The real experiment suggests measurement and analysis of vibrational spectra. For quantum chemical calculations, semiempirical methods (MNDO and AM1) were chosen. In most calculations, the MNDO/H method was preferred because of the presence of many H-bonds in the surface zone. For verification of calculations, we calculated the structures and vibrational spectra of water and ammonia molecules and the water-ammonia complex and compared the results with experimental and ab initio (extended basis) data; MNDO/H proved to be an optimal method giving reliable results. Russian Peoples' Friendship University. Translated fromZhurnal Strukturnoi Khimii, Vol. 36, No. 1, pp. 58–69, January–February, 1995. Translated by L. Smolina  相似文献   

20.
Intramolecular vibrational energy redistributions of the O-H stretching (nuOH) vibration for the methanol monomer and its water complex, the methanol-water dimer, are investigated by using ab initio full-dimensional classical trajectory calculations. For the methanol monomer, in the high-energy regime of the 5nuOH overtone, the time dependence of the normal-mode energies indicates that energy flowed from the initial excited O-H stretching mode to the C-H stretching mode. This result confirms the experimental observation of energy redistribution between the O-H and C-H stretching vibrations [L. Lubich et al., Faraday Discuss. 102, 167 (1995)]. Furthermore, a lot of dynamical information in the time domain is contained in the power spectra, whose density is given by the Fourier transformation of the total momentum obtained from trajectory calculations. For the methanol-water hydrogen-bonded complex, at the high-energy level of the 5nuOH overtone, the calculated power spectrum shows considerable splitting and broadening, indicating significant energy redistribution through strong coupling between the O-H stretching vibration and other vibrations. It is thus clear that the A-H...B hydrogen-bond formation facilitates energy redistribution subsequent to the vibrational excitation of the hydrogen-bonded A-H stretching mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号