首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The electron transport mechanism changes from tunneling to hopping as molecular length increases. To validate the theoretical simulation after the transition point and clarify influence of electronic structures on the transition, we calculated the conductance of a series of conjugated molecules by density functional theory together with the nonequilibrium Green's function. We found that the highest occupied molecular orbital energy level, transmission spectrum, and the reorganization energy are good indicators for the transition of the electron transport mechanism. The calculated resistances of short junctions (<50 Å, before the transition point) are consistent with the experimental result, following the tunneling mechanism. However, the theoretical predication failed for long molecules, indicating the limitation of the theoretical framework of elastic scattering when the electron transport mechanism changes to hopping. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

2.
Electron tunneling spectroscopies have been performed on tunnel junctions incorporating mercaptohexadecanoic acid (MHA) between gold and surface-oxidized aluminum electrodes. Low-temperature superconducting conductance spectroscopy provides direct evidence for elastic tunneling across the junctions. At room temperature the electron transport of these junctions exhibits a high sensitivity to ambient humidity; the resistance of these devices drops by more than 50% when they are placed into a dry atmosphere or vacuum and recovers after they are returned to ambient air. By comparing these results to those obtained for similar junctions incorporating different molecular monolayers, it is determined that the interaction of water molecules with the AlO(x)/carboxylate interface is the origin of the observed behavior. The tunneling spectra and the current-voltage characteristics indicate significant modifications of the barrier height of the AlO(x) upon MHA binding and in the hydration of the molecular interface.  相似文献   

3.
We use density functional theory based nonequilibrium Green's function to self-consistently study the current through the 1,4-benzenedithiol (BDT). The elastic and inelastic tunneling properties through this Au-BDT-Au molecular junction are simulated, respectively. For the elastic tunneling case, it is found that the current through the tilted molecule can be modulated effectively by the external gate field, which is perpendicular to the phenyl ring. The gate voltage amplification comes from the modulation of the interaction between the electrodes and the molecules in the junctions. For the inelastic case, the electron tunneling scattered by the molecular vibrational modes is considered within the self-consistent Born approximation scheme, and the inelastic electron tunneling spectrum is calculated.  相似文献   

4.
I/V characteristics recorded in mechanically controllable break junctions revealed that field emission transport is enhanced in single molecule junctions as the gap size between two nanoelectrodes is reduced. This observation indicates that Fowler-Nordheim tunneling occurs not only for intermolecular but also for intramolecular electron transport driven by a reduced energy barrier at short tunneling distances.  相似文献   

5.
Geometries of molecule-molecule interfaces strongly influence the current passing from one molecule to another. The contact conductance of molecule-molecule junctions which consist of fullerene and tin phthalocyanine molecules is investigated with a low-temperature scanning tunneling microscope. Two types of molecules are deposited onto Cu(111). Fullerene molecules are transferred to tips through controlled contact of STM tips on molecules. The molecule-molecule junctions are formed by approachi...  相似文献   

6.
有机功能分子是新型纳光电器件研究热门材料之一, 多用金属-分子-金属结方法研究其荷电输运特性.本文从无损制备、微纳尺度及可寻址性等方面, 综述了金属-分子-金属结器件研究进展. 将制备方法归为软接触法、扫描探针显微镜法、对电极法、交叉线法、角沉积法和纳米孔法等六大类, 并分析了不同方法及实验参数对荷电输运特性的影响. 总的来说, 扫描探针法可用于分子电学特性的快速统计分析, 但可寻址性差; 纳米孔分子结具有良好的可寻址性, 可用于分子输运特性的变温研究, 但上电极沉积可导致分子层破坏或界面特性不确定; 角度沉积法和软接触法可有效减少电极热沉积对分子层的烧蚀, 但器件尺度较大; 对电极法可获得纳米级可寻址分子结, 若结合模板压印交叉纳米线法制备电极, 则在无损分子器件研究及其集成方面有很好的前景.  相似文献   

7.
采用硫醇自组装单层膜结合悬浮纳米线技术制备了分子结器件, 对比研究了非电活性的1-十一烷基硫醇(C11)和电活性的二茂铁己硫醇(FHT)分子结的电荷传输特性. 结合两种传输机理, 提出一种新的模型拟合了分子结的电流-电压特性, 发现了氧化还原活性中心二茂铁(Ferrocene, Fc)可以使电荷传输机理由隧穿变成隧穿与跳跃共存. 结合变温实验验证了这一机理, 并对这种混合机理出现的原因进行了分析.  相似文献   

8.
Understanding the effects of intermolecular interactions on the charge-transport properties of metal/molecule/metal junctions is an important step towards using individual molecules as building blocks for electronic devices. This work reports a systematic electron-transport investigation on a series of "core-shell"-structured oligo(phenylene ethynylene) (Gn-OPE) molecular wires. By using dendrimers of different generations as insulating "shells", the intermolecular π-π interactions between the OPE "cores" can be precisely controlled in single-component monolayers. Three techniques are used to evaluate the electron-transport properties of the Au/Gn-OPE/Au molecular junctions, including crossed-wire junction, scanning tunneling spectroscopy (STS), and scanning tunneling microscope (STM) break-junction techniques. The STM break-junction measurement reveals that the electron-transport pathways are strongly affected by the size of the side groups. When the side groups are small, electron transport could occur through three pathways, including through single-molecule junctions, double-molecule junctions, and molecular bridges between adjacent molecules formed by aromatic π-π coupling. The dendrimer shells effectively prohibit the π-π coupling effect, but at the same time, very large dendrimer side groups may hinder the formation of Au-S bonds. A first-generation dendrimer acts as an optimal shell that only allows electron transport through the single-molecule junction pathway, and forbids the other undesired pathways. It is demonstrated that the dendrimer-based core-shell strategy allows the single-molecule conductance to be probed in a homogenous monolayer without the influence of intermolecular π-π interactions.  相似文献   

9.
金属/分子/金属结是分子电子学中的基本单元.根据电子的相位是否发生改变,分子结中的电子输运可以分为相干输运和非相干输运两类.在实验上,分子结的表征方法可以分为电学性质表征和非电学性质表征两类.本文借助能级图,首先对分子结的电子输运机理作了简明解释.在此基础上,结合文献报道和本课题组此前的工作,对分子结的一些常用电学表征方法,包括电流-电压特性曲线、电流-时间曲线、电导统计柱状图、转变电压谱、散粒噪声测试、非弹性电子隧道谱和热电效应法进行了介绍.  相似文献   

10.
We present a combined experimental and theoretical study of the electronic transport through single-molecule junctions based on nitrile-terminated biphenyl derivatives. Using a scanning tunneling microscope-based break-junction technique, we show that the nitrile-terminated compounds give rise to well-defined peaks in the conductance histograms resulting from the high selectivity of the N-Au binding. Ab initio calculations have revealed that the transport takes place through the tail of the LUMO. Furthermore, we have found both theoretically and experimentally that the conductance of the molecular junctions is roughly proportional to the square of the cosine of the torsion angle between the two benzene rings of the biphenyl core, which demonstrates the robustness of this structure-conductance relationship.  相似文献   

11.
Understanding electron transport in metal-molecule-metal (MMM) junctions is of great importance for the advancement of molecular electronics. Critical factors that determine conductivity in a MMM junction include the nature of metal-molecule contacts and the electronic structure of the molecular backbone. We have studied the electronic transport property and the valence electronic structure on rigid, conjugated oligoacenes of increasing length with either thiol (-S) or isocyanide (-CN) linkers using conducting probe atomic force microscopy (CP-AFM) and ultraviolet photoelectron spectroscopy (UPS). We find that for these conjugated systems the Au-CN contact is more resistive than Au-S. The difference in contact resistance correlates with UPS measurements that show the highest-occupied molecular orbital (HOMO) of the isocyanide series is lower in energy (relative to the Fermi level of Au) than the HOMO of the thiol series, indicating the presence of a higher tunneling barrier at the contact for the isocyanide-linked molecules. By contrast, the difference in the HOMO positions for the two series of molecules does not appear to affect the length dependence of the junction resistance (i.e., the beta value = 0.5 A-1).  相似文献   

12.
This paper describes the performance of junctions based on self-assembled monolayers (SAMs) as the functional element of a half-wave rectifier (a simple circuit that converts, or rectifies, an alternating current (AC) signal to a direct current (DC) signal). Junctions with SAMs of 11-(ferrocenyl)-1-undecanethiol or 11-(biferrocenyl)-1-undecanethiol on ultraflat, template-stripped Ag (Ag(TS)) bottom electrodes, and contacted by top electrodes of eutectic indium-gallium (EGaIn), rectified AC signals, while similar junctions based on SAMs of 1-undecanethiol-SAMs lacking the ferrocenyl terminal group-did not. SAMs in these AC circuits (operating at 50 Hz) remain stable over a larger window of applied bias than in DC circuits. AC measurements, therefore, can investigate charge transport in SAM-based junctions at magnitudes of bias inaccessible to DC measurements. For junctions with SAMs of alkanethiols, combining the results from AC and DC measurements identifies two regimes of bias with different mechanisms of charge transport: (i) low bias (|V| < 1.3 V), at which direct tunneling dominates, and (ii) high bias (|V| > 1.3 V), at which Fowler-Nordheim (FN) tunneling dominates. For junctions with SAMs terminated by Fc moieties, the transition to FN tunneling occurs at |V| ≈ 2.0 V. Furthermore, at sufficient forward bias (V > 0.5 V), hopping makes a significant contribution to charge transport and occurs in series with direct tunneling (V ? 2.0 V) until FN tunneling activates (V ? 2.0 V). Thus, for Fc-terminated SAMs at forward bias, three regimes are apparent: (i) direct tunneling (V = 0-0.5 V), (ii) hopping plus direct tunneling (V ≈ 0.5-2.0 V), and (iii) FN tunneling (V ? 2.0 V). Since hopping does not occur at reverse bias, only two regimes are present over the measured range of reverse bias. This difference in the mechanisms of charge transport at forward and reverse bias for junctions with Fc moieties resulted in large rectification ratios (R > 100) and enabled half-wave rectification.  相似文献   

13.
利用非平衡格林函数与密度泛函理论相结合方法研究了电极表面具有原子级突起的铜-真空-铜隧道结的转变电压.计算结果表明,铜电极真空隧道结的转变电压主要决定于电极表面尖端铜原子4p轨道的局域态密度,因而对电极取向和表面局域原子构型非常敏感.对于电极取向沿(111)方向的铜电极真空隧道结,当电极表面原子级突起取为铜吸附原子和金字塔型铜纳米粒子两种构型时,转变电压的计算值分别约为1.40和2.40 V.当电极取向沿(100)方向时,电极表面原子级突起分别为铜吸附原子和金字塔型铜纳米粒子两种构型的铜电极真空隧道结,其转变电压的差异更为显著.具体而言,电极表面有一金字塔型铜纳米粒子的铜电极真空隧道结的转变电压值减小至1.70 V,而电极表面原子级突起为铜吸附原子的铜电极真空隧道结却因铜吸附原子4p轨道的局域态密度过于扩展,即使在偏压超过1.80 V时仍然没有出现转变电压.这些结果表明转变电压谱可用作分析金属电极真空隧道结电子输运特性的有力工具.  相似文献   

14.
We report the tunneling behavior of homogeneous and heterogeneous molecular junctions using p-type molecules of iron phthalocyanine (FePc), phthalocyanine (H(2)Pc), and copper(II) octaalkoxyl substituted phthalocyanine (CuPcOC8) and n-type molecule of copper hexadecafluorophthalocyanine (F(16)CuPc). The molecular films formed on the electrode surfaces were inspected by X-ray photoelectron spectroscopy (XPS). The measured characteristic tunneling curves of single-component phthalocyanines revealed comparable energy gaps for homogeneous tunneling junctions using the photoemission method. In contrast, for the heterogeneous tunnel junctions of mixed phthalocyanines including fluorinated phthalocyanine a distinctive offset of the energy gaps to the positive bias voltage direction can be clearly identified. It is suggested that the substitution of phthalocyanines and surface affinity of phthalocyanines could contribute to the controlled phase separation within the heterogeneous tunneling junctions. The apparent shift of the tunneling spectra is attributed to the existence of an internal electric field originated with the phase separation of the binary mixture of p-type and n-type phthalocyanines within the tunneling junction.  相似文献   

15.
A series of p- and n-GaAs-S-C(n)H(2n+1) || Hg junctions are prepared, and the electronic transport through them is measured. From current-voltage measurements, we find that, for n-GaAs, transport occurs by both thermionic emission and tunneling, with the former dominating at low forward bias and the latter dominating at higher forward bias. For p-GaAs, tunneling dominates at all bias voltages. By combining the analysis of the transport data with results from direct and inverse photoemission spectroscopy, we deduce an energy band diagram of the system, including the tunnel barrier and, with this barrier and within the Simmons tunneling model, extract an effective mass value of 1.5-1.6m(e) for the electronic carriers that cross the junctions. We find that transport is well-described by lowest unoccupied and highest occupied states at 1.3-1.4 eV above and 2.0-2.2 eV below the Fermi level. At the same time, the photoemission data indicate that there are continua of states from the conduction band minimum and the valence band maximum, the density of which varies with energy. On the basis of our results, it appears likely that, for both types of junctions, electrons are the main carrier type, although holes may contribute significantly to the transport in the p-GaAs system.  相似文献   

16.
Electron transport through single molecules or collections of molecules oriented in parallel can occur by several mechanisms, including coherent tunneling, activated transfer between potential wells, various “hopping” modes, etc. Given suitable energy levels and sufficiently long charge transport times, reduction or oxidation with accompanying nuclear reorganization can occur to generate “polarons”, that is, localized redox centers in the molecule or monolayer. Redox events in molecular junctions are amenable to spectroscopic monitoring in working devices, and can have major effects on the electronic behavior of the junction. Several examples are presented, along with a possible application to molecular memory.  相似文献   

17.
Molecular junctions were fabricated with the combined use of electrochemistry and conventional CMOS tools. They consist of a 5-10 nm thick layer of oligo(1-(2-bisthienyl)benzene) between two gold electrodes. The layer was grafted onto the bottom electrode using diazonium electroreduction, which yields a stable and robust gold-oligomer interface. The top contact was obtained by direct electron-beam evaporation on the molecular layers through masks defined by electron-beam lithography. Transport mechanisms across such easily p-dopable layers were investigated by analysis of current density-voltage (J-V) curves. Application of a tunneling model led to a transport parameter (thickness of ~2.4 nm) that was not consistent with the molecular thickness measured using AFM (~7 nm). Furthermore, for these layers with thicknesses of 5-10 nm, asymmetric J-V curves were observed, with current flowing more easily when the grafted electrode was positively polarized. In addition, J-V experiments at two temperatures (4 and 300 K) showed that thermal activation occurs for such polarization but is not observed when the bias is reversed. These results indicate that simple tunneling cannot describe the charge transport in these junctions. Finally, analysis of the experimental results in term of "organic electrode" and redox chemistry in the material is discussed.  相似文献   

18.
Self-assembled monolayers (SAMs) of octanethiol and benzeneethanethiol were deposited on clean Pt(111) surfaces in ultrahigh vacuum (UHV). Highly resolved images of these SAMs produced by an in situ scanning tunneling microscope (STM) showed that both systems organize into a super-structure mosaic of domains of locally ordered, closely packed molecules. Analysis of the STM images indicated a (square root 3 x square root 3)R30 degrees unit cell for the octanethiol SAMs and a 4(square root 3 x square root 3)R30 degrees periodicity based on 2 x 2 basic molecular packing for the benzeneethanethiol SAMs under the coverage conditions investigated. SAMs on Pt(111) exhibited differences in molecular packing and a lower density of disordered regions than SAMs on Au(111). Electron transport measurements were performed using scanning tunneling spectroscopy. Benzeneethanethiol/Pt(111) junctions exhibited a higher conductance than octanethiol/Pt(111) junctions.  相似文献   

19.
Quantum interference(QI) effects, which offer unique opportunities to widely manipulate the charge transport properties in the molecular junctions, will have the potential for achieving high thermopower.Here we developed a scanning tunneling microscope break junction technique to investigate the thermopower through single-molecule thiophene junctions. We observed that the thermopower of 2,4-TPSAc with destructive quantum interference(DQI) was nearly twice of 2,5-TP-SAc without DQI, while the con...  相似文献   

20.
Providing a chemical control over charge transport through molecular junctions is vital to developing sensing applications at the single-molecule scale. Quantum-interference effects that affect the charge transport through molecules offer a unique chance to enhance the chemical control. Here, we investigate how interference effects can be harnessed to optimize the response of single molecule dithienoborepin (DTB) junctions to the specific coordination of a fluoride ion in solution. The single-molecule conductance of two DTB isomers is measured using scanning tunneling microscopy break-junction (STM-BJ) before and after fluoride ion exposure. We find a significant change of conductance before and after the capture of a fluoride ion, the magnitude of which depends on the position of the boron atom in the molecular structure. This single-molecule sensor exhibits switching ratios of up to four orders of magnitudes, suggesting that the boron–fluoride coordination can lead to quantum-interference effects. This is confirmed by a quantum chemical characterization, pointing toward a cross-conjugated path through the molecular structure as the origin of the effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号