首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a ternary nucleation formalism, we have recently [Y. S. Djikaev and E. Ruckenstein, J. Chem. Phys. 126, 175103 (2007)] proposed a kinetic model for the nucleation mechanism of protein folding. A protein was considered as a heteropolymer consisting of hydrophobic, hydrophilic, and neutral beads with all the bonds having the same constant length and all the bond angles equal and fixed. In this paper, we further develop that model by taking into account of the ionizability of some of the protein residues. As previously, an overall potential around the cluster wherein a protein residue performs a chaotic motion is considered to be a combination of the average dihedral and average pairwise potentials (the latter now including an electrostatic contribution for ionized residues) assigned to the residue and the confining potential due to the polymer connectivity constraint. The overall potential as a function of the distance from the cluster has a double well shape (even for ionized beads) which allows one to determine the rates of emission and absorption of residues by the cluster by using a first passage time analysis. Assuming the equality of the ratios of the numbers of negatively and positively ionized residues in the cluster and in the entire protein, one can keep the modified model within the framework of the ternary nucleation formalism and evaluate the size and composition of the nucleus and the protein folding time as in the previous model. As an illustration, the model is again applied to the folding of bovine pancreatic ribonuclease consisting of 124 amino acids, whereof 40 are hydrophobic, 81 hydrophilic (of which 10 are negatively and 18 positively ionizable), and 3 neutral. Numerical calculations at pH=6.3, pH=7.3, and pH=8.3 show that for this protein the time of folding via nucleation is significantly affected by electrostatic interactions only for the unusually low pH of 6.3 and that among all pH's considered pH=7.3 provides the lowest folding time.  相似文献   

2.
A nucleation-like pathway of protein folding involves the formation of a cluster containing native residues that grows by including residues from the unfolded part of the protein. This pathway is examined by using a heteropolymer as a protein model. The model heteropolymer consists of hydrophobic and hydrophilic beads with fixed bond lengths and bond angles. The total energy of the heteropolymer is determined by the pairwise repulsive/attractive interactions between nonlinked beads and by the contribution from the dihedral angles involved. The parameters of these interactions can be rigorously defined, unlike the ill-defined surface tension of a cluster of protein residues that constitutes the basis of a previous nucleation model. The main idea underlying the new model consists of averaging the dihedral potential of a selected residue over all possible configurations of all neighboring residues along the protein chain. The resulting average dihedral potential depends on the distance between the selected residue and the cluster center. Its combination with the average pairwise potential of the selected residue and with a confining potential caused by the bonds between the residues leads to an overall potential around the cluster that has a double-well shape. Residues in the inner (closer to the cluster) well are considered as belonging to the folded cluster, whereas those in the outer well are treated as belonging to the unfolded part of the protein. Transitions of residues from the inner well into the outer one and vice versa are considered as elementary emission and absorption events, respectively. The double-well character of the potential well around the cluster allows one to determine the rates of both emission and absorption of residues by the cluster using a first passage time analysis. Once these rates are found as functions of the cluster size, one can develop a self-consistent kinetic theory for the nucleation mechanism of folding of a protein. The model allows one to evaluate the size of the nucleus and the protein folding time. The latter is evaluated as the sum of the times necessary for the first nucleation event to occur and for the nucleus to grow to the maximum size (of the folded protein). Depending on the diffusion coefficients of the native residues in the range from 10(-6) to 10(-8) cm2/s, numerical calculations for a protein of 2500 residues suggest that the folding time ranges from several seconds to several hundreds of seconds.  相似文献   

3.
Recently, the authors proposed a kinetic model for the nucleation mechanism of protein folding where a protein was treated as a heteropolymer with all the bonds and bond angles equal and constant. As a crucial idea of the model, an overall potential around a cluster of native residues in which a protein residue performs a chaotic motion is considered to be a combination of three potentials: effective pairwise, average dihedral, and confining. The overall potential as a function of the distance from the cluster center has a double well shape which allows one to determine the rates with which the cluster emits and absorbs residues by using a first passage time analysis. One can then develop a kinetic theory for the nucleation mechanism of protein folding and evaluate the protein folding time. In the present paper we evaluate the optimal temperature at which the protein folding time is the shortest. A method is also proposed to determine the temperature dependence of the folding time without carrying out the time consuming calculations for a series of temperatures. Using Taylor series expansions in the formalism of the first passage time analysis, one can calculate the temperature dependence of the cluster emission and absorption rates in the vicinity of some temperature T(0) if they are known at T(0). Thus one can evaluate the protein folding time t(f) at any other temperature T in the vicinity of T(0) at which the folding time t(f) is known. We also present a model for the thermal denaturation of a protein occurring via the decay of the native structure of the protein. Due to a sufficiently large temperature increase or decrease, the rate with which a cluster of native residues within a protein emits residues becomes larger than the absorption rate in the whole range of cluster sizes up to the size of the whole protein. This leads to the unfolding of the protein in a barrierless way, i.e., as spinodal decomposition. Knowing the cluster emission and absorption rates as functions of temperature and cluster size, one can find the threshold temperatures of cold and hot barrierless denaturation as well as the corresponding unfolding times. Both proposed methods are illustrated by numerical calculations for two model proteins, one consisting of 124 amino acids, the other consisting of 2500 residues. The first one roughly mimicks a bovine pancreatic ribonuclease while the second one is a representative of the largest proteins which are extremely difficult to study by straightforward Monte Carlo or molecular dynamics simulations.  相似文献   

4.
The model of a heteropolymer film formed by polypeptide chains was used for theoretical considerations. The linear chains consisting of amino acid residues were approximated by alpha carbon chains. Each chain was constructed on a very flexible [310] lattice. The inter- and intramolecular interactions consisted of the long-range contact potential between residues. The chains were built of hydrophilic and hydrophobic residues. Chains were terminally attached to an impenetrable surface with lateral motions possible. The Monte Carlo simulations of this model were carried out by using the Metropolis algorithm. The influence of the grafting density, the sequence of the amino acid residues, and the temperature on the static properties of the formed layer were studied and discussed. It was shown that homopolymer chains collapsed at higher temperature than the heteropolymers. The size of the polymers forming brush was smaller for homopolymers than for heteropolymers. The structure of the resulting polymer film and of its external surface was determined. The block copolymers formed well defined hydrophobic and hydrophilic layers, while for the amphiphilic case the composition of the brush layers changed continuously at high temperature. It was observed that the latter effect vanished at the collapsed amphiphilic copolymer.  相似文献   

5.
6.
Folding channels and free-energy landscapes of hydrophobic-polar heteropolymers are discussed on the basis of a minimalistic off-lattice coarse-grained model. We investigate how rearrangements of hydrophobic and polar monomers in a heteropolymer sequence lead to completely different folding behaviors. Studying three exemplified sequences with the same content of hydrophobic and polar residues, we can reproduce within this simple model two-state folding, folding through intermediates, as well as metastability.  相似文献   

7.
The traditional theory for binary homogeneous nucleation follows the classical derivation of the nucleation rate in the supposition of a hypothetical constrained-equilibrium distribution in the calculation of the cluster evaporation rate. This model enables calculation of the nucleation rate, but requires evaluation of the cluster distribution and cluster properties for an unstable equilibrium with supersaturated vapor. An alternate derivation of the classical homomolecular nucleation rate eliminated the need for this nonphysical approximation by calculating the evaporative flux at full thermodynamic equilibrium. The present paper develops that approach for binary nucleation; the framework is readily extended to ternary nucleation. In this analysis, the evaporative flux is evaluated by applying mass balance at full thermodynamic equilibrium of the system under study. This approach eliminates both the need for evaluating cluster properties in an unstable constrained-equilibrium state and ambiguity in the normalization constant required in the nucleation-rate expression. Moreover, it naturally spans the entire composition range between the two pure monomers. The cluster fluxes derived using this new model are similar in form to those of classical derivations, so previously developed methods for evaluation of the net nucleation rate can be applied directly to the new formulation.  相似文献   

8.
We perform extensive Monte Carlo simulations of a lattice model and the Gō potential [N. Gō and H. Taketomi, Proc. Natl. Acad. Sci. U.S.A. 75, 559563 (1978)] to investigate the existence of folding pathways at the level of contact cluster formation for two native structures with markedly different geometries. Our analysis of folding pathways revealed a common underlying folding mechanism, based on nucleation phenomena, for both protein models. However, folding to the more complex geometry (i.e., that with more nonlocal contacts) is driven by a folding nucleus whose geometric traits more closely resemble those of the native fold. For this geometry folding is clearly a more cooperative process.  相似文献   

9.
We report a computer-simulation study of the free-energy barrier for the nucleation of pores in the bilayer membrane under constant stretching lateral pressure. We find that incipient pores are hydrophobic but as the lateral size of the pore nucleus becomes comparable with the molecular length, the pore becomes hydrophilic. In agreement with previous investigations, we find that the dynamical process of growth and closure of hydrophilic pores is controlled by the competition between the surface tension of the membrane and the line tension associated with the rim of the pore. We estimate the line tension of a hydrophilic pore from the shape of the computed free-energy barriers. The line tension thus computed is in a good agreement with available experimental data. We also estimate the line tension of hydrophobic pores at both macroscopic and microscopic levels. The comparison of line tensions at these two different levels indicates that the "microscopic" line tension should be carefully distinguished from the "macroscopic" effective line tension used in the theoretical analysis of pore nucleation. The overall shape of the free-energy barrier for pore nucleation shows no indication for the existence of a metastable intermediate during pore nucleation.  相似文献   

10.
The folding mechanism of the G29A mutant of the B-domain of protein A (BdpA) has been studied by all-atom molecular dynamics simulation using AMBER force field (ff03) and generalized Born continuum solvent model. Started from the extended chain conformation, a total of 16 simulations (400 ns each) at 300 K captured some early folding events of the G29A mutant of BdpA. In one of the 16 trajectories, the G29A mutant folded within 2.8 A (root mean square) of the wild-type NMR structure. We observed that the fast burial of hydrophobic residues was the driving force to bring the distant residues into close proximity. The initiation of the helix I and III occurred during the stage of hydrophobic collapse. The initiation and growth of the helix II was slow. Both the secondary structure formation and the development of the native tertiary contacts suggested a multistage folding process. Clustering analysis indicated that two helix species (helices I and III) could be intermediates. Further analysis revealed that the hydrophobic residues of partially folded helix II formed nativelike hydrophobic contacts with helices I and III that stabilized a nativelike state and delayed the completion of folding of the entire protein. The details of the early folding process were compared with other theoretical and experimental studies. It was found that a nativelike hydrophobic cluster was formed by residues including F(30), I(31), L(34), L(44), L(45), and A(48) that prevented further development of the native structures, and breaking the hydrophobic cluster like this one contributed to the rate-limiting step. This was in complete agreement with the recent kinetic measurements in which mutations of these residues to Gly and Ala substantially increased the folding rates by as much as 60 times. Apparently, destabilization of nonnative states dramatically enhanced the folding rates.  相似文献   

11.
We present results of Monte Carlo computer simulations of a coarse-grained hydrophobic-polar Gō-like heteropolymer model and discuss thermodynamic properties and kinetics of an exemplified heteropolymer, exhibiting two-state folding behavior. It turns out that general, characteristic folding features of realistic proteins with a single free-energy barrier can also be observed in this simplified model, where the folding transition is primarily driven by the hydrophobic force.  相似文献   

12.
A new semiphenomenological model of homogeneous vapor-liquid nucleation is proposed in which the cluster kinetics follows the "kinetic approach to nucleation" and the thermodynamic part is based on the revised Fisher droplet model with the mean-field argument for the cluster configuration integral. The theory is nonperturbative in a cluster size and as such is valid for all clusters down to monomers. It contains two surface tensions: macroscopic (planar) and microscopic. The latter is a temperature dependent quantity related to the vapor compressibility factor at saturation. For Lennard-Jones fluids the microscopic surface tension possesses a universal behavior with the parameters found from the mean-field density functional calculations. The theory is verified against nucleation experiments for argon, nitrogen, water, and mercury, demonstrating very good agreement with experimental data. Classical nucleation theory fails to predict experimental results when a critical cluster becomes small.  相似文献   

13.
We show that the binary homogeneous nucleation (BHN) of H2SO4-H2O can be treated as quasi-unary nucleation of H2SO4 in equilibrium with H2O vapor. A scheme to calculate the evaporation coefficient of H2SO4 molecules from H2SO4-H2O clusters is presented and a kinetic model to simulate the quasi-unary nucleation of H2SO4-H2O is developed. In the kinetic model, the growth and evaporation of sulfuric acid clusters of various sizes are explicitly simulated. The kinetic quasi-unary nucleation model does not have two well-recognized problems associated with the classical BHN theory (violation of the mass action law and mismatch of the cluster distribution for monomers) and is appropriate for the situations where the assumption of equilibrium cluster distribution is invalid. The nucleation rates predicted with our quasi-unary kinetic model are consistent with recent experimental nucleation experiments in all the cases studied, while the most recent version of the classical BHN model systematically overpredicts the nucleation rates. The hydration of sulfuric acid clusters, which is not considered in the classical model but is accounted for implicitly in our kinetic quasi-unary model, is likely to be one of physical mechanisms that lead to lower nucleation rates. Further investigation is needed to understand exactly what cause the difference between the kinetic quasi-unary model and the classical BHN model.  相似文献   

14.
采用完全计数法,研究了二维紧密蛋白质链在不同HP序列时的构象性质,特别是具有唯一基态能量的折叠序列的性质.对于具有N个单体的紧密蛋白质链,发现有一定比例的序列为折叠序列.在这些折叠序列中,疏水基团(H)的数目比亲水基团(P)多20%,并同200种真实蛋白质分子的疏水基团和亲水基团的结果进行了比较.对于不同的折叠序列,根据序列中其疏水基团的数目,把具有相同疏水基团数目的序列归在同一类,发现这样的序列在总的序列中的相对含量满足高斯分布.同时还对序列中H(或者P)团族大小及其分别进行了研究,发现折叠序列与无规随机序列不同.还研究了不同折叠序列在不同链长时的比热情况,发现其相转变温度TC主要与链长有关,与折叠序列无关.  相似文献   

15.
Although the folding of individual protein domains has been extensively studied both experimentally and theoretically, protein folding induced by a metal cation has been relatively understudied. Almost all folding mechanisms emphasize the role of the side-chain interactions rather than the peptide backbone in the protein folding process. Herein, we focus on the thermodynamics of the coupled metal binding and protein folding of a classical zinc-finger (ZF) peptide, using all-electron calculations to obtain the structures of possible nucleation centers and free energy calculations to determine their relative stability in aqueous solution. The calculations indicate that a neutral Cys first binds to hexahydrated Zn2+ via its ionized sulfhydryl group and neutral backbone oxygen, with the release of four water molecules and a proton. Another nearby Cys then binds in the same manner as the first one, yielding a fully dehydrated Zn2+. Subsequently, two His ligands from the C-terminal part of the peptide successively dislodge the Zn-bound backbone oxygen atoms to form the native-like Zn-(Cys)2(His)2 complex. Each successive Zn complex accumulates increasingly favorable and native interactions, lowering the energy of the ZF polypeptide, which concomitantly becomes more compact, reducing the search volume, thus guiding folding to the native state. In the protein folding process, not only the side chains but also the backbone peptide groups play a critical role in stabilizing the nucleation structures and promoting the hydrophobic core formation.  相似文献   

16.
A multigrid algorithm has been developed enabling more efficient solution of the cluster size distribution for N-component nucleation from the Becker-D?ring equations. The theoretical derivation is valid for an arbitrary number of condensing components, making the simulation of many-component nucleating systems feasible. A steady state ternary nucleation problem is defined to demonstrate its efficiency. The results are used as a validation for existing nucleation theories. The non-steady state ternary problem provides useful insight into the initial stages of the nucleation process. We observe that for the ideal mixture the main nucleation flux bypasses the saddle point.  相似文献   

17.
The homogeneous nucleation rates for n-nonane-n-propanol vapor mixtures have been calculated as a function of vapor-phase activities at 230 K using the classical nucleation theory (CNT) with both rigorous and approximate kinetic prefactors and compared to previously reported experimental data. The predicted nucleation rates resemble qualitatively the experimental results for low n-nonane gas phase activity. On the high nonane activity side the theoretical nucleation rates are about three orders of magnitude lower than the experimental data when using the CNT with the approximate kinetics. The accurate kinetics improves the situation by reducing the difference between theory and experiments to two orders of magnitude. Besides the nucleation rate comparison and the experimental and predicted onset activities, the critical cluster composition is presented. The total number of molecules is approximated by CNT with reasonable accuracy. Overall, the classical nucleation theory with rigorous kinetic prefactor seems to perform better. The thermodynamic parameters needed to calculate the nucleation rates are revised extensively. Up-to-date estimates of liquid phase activities using universal functional activity coefficient Dortmund method are presented together with the experimental values of surface tensions obtained in the present study.  相似文献   

18.
Theoretical and computational investigations of nucleation have been plagued by the sensitivity of the phase diagram to the range of the interaction potential. As the surface tension depends strongly on the range of interaction potential and as the classical nucleation theory (CNT) predicts the free energy barrier to be directly proportional to the cube of the surface tension, one expects a strong sensitivity of nucleation barrier to the range of the potential; however, CNT leaves many aspects unexplored. We find for gas-liquid nucleation in Lennard-Jones system that on increasing the range of interaction the kinetic spinodal (KS) (where the mechanism of nucleation changes from activated to barrierless) shifts deeper into the metastable region. Therefore the system remains metastable for larger value of supersaturation and this allows one to explore the high metastable region without encountering the KS. On increasing the range of interaction, both the critical cluster size and pre-critical minima in the free energy surface of kth largest cluster, at respective kinetic spinodals, shift towards smaller cluster size. In order to separate surface tension contribution to the increase in the barrier from other non-trivial factors, we introduce a new scaling form for surface tension and use it to capture both the temperature and the interaction range dependence of surface tension. Surprisingly, we find only a weak non-trivial contribution from other factors to the free energy barrier of nucleation.  相似文献   

19.
Recent kinetic extensions of the nucleation theorem suggest that the logarithm of the steady-state nucleation rate has strong multilinear dependence on the log concentrations of condensable species present in the vapor phase. A further remarkable result is that the coefficients of this linear dependency provide a direct determination of the molecular content of the critical nucleus itself. Building on these results, the powerful utility of multivariate statistical methods is demonstrated here for physically based parametrization and interpretation of nucleation rate measurements. The new approach is applied to recent measurements by Zhang et al. [Science 304, 1487 (2004)] on the p-toluic acid/sulfuric acid/water ternary vapor system. A linear minimum variance parametrization for nucleation rate dependence on vapor composition, accurate over the range of the measurements, is obtained. Estimates of critical nucleus molecular composition are also presented. These suggest that a single molecule of p-toluic acid present in the critical nucleus is sufficient to trigger a ternary nucleation event. Efforts under way to apply the new methods to analysis of new particle formation in the atmosphere are discussed.  相似文献   

20.
Translational and rotational diffusion equation of single elements in solution in the external orienting potential forces has been formulated. The equation should govern long-range diffusion effects in the kinetics of nucleation and crystal growth. Boundary conditions, adequate to the reversible reaction of cluster growth typical for kinetic model of nucleation and accounting for steric limitations, has been proposed. Uniaxial single elements in uniaxial orienting force field are considered.Depression of the concentration of single elements at the cluster boundary as controlled by kinetic factors, is predicted i. e., chemical rate constants, finite translational and rotational diffusion, supercolling, and steric limitations. Effective rate constants, controlled by long-range diffusion of single elements at steric limitations present, have been used. Two dimensionless kinetic factors (i. e., reduced addition-reaction rate constant and reduced rotational diffusion constant), supercooling, and steric tolerance anlge range, control process kinetics and distribution of single elements in the cluster's surroundings. Rate reduction factor responsible for the effects of long-range diffusion at steric limitations present is defined and applied for kinetic models of nucleation and crystal growth in unoriented and oriented systems.Computation examples are performed for a wide range of the model variables, and rate reduction effects of several orders of magnitude are predicted. The dominating role ranges of particular model variables, i. e., kinetic, thermodynamic, or steric variables, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号