首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
How to partition a chemical system into its constituent parts is a classic problem of theoretical chemistry. A formally exact solution has recently been developed, partition theory (PT), based on density functional theory [Cohen, M. H.; Wasserman, A. J. Phys. Chem. A 2007, 111, 2229]. PT presents a constrained optimization problem to which the Car-Parrinello (CP) method of electronic structure theory is well suited. We propose here a generalization of the CP method suitable for PT and thereby make way for its practical numerical implementation. We demonstrate that this CP implementation of PT need not increase the complexity of the computation of the system's electronic structure. The scheme provides an exact DFT formulation of, e.g., atoms in molecules theory that is amenable to numerical implementation.  相似文献   

2.
We present a new method for estimating the vibrational free energy of crystal (and molecular) structures employing only a single force calculation, for a particularly displaced configuration, in addition to the calculation of the ground state configuration. This displacement vector is the sum of the phonon eigenvectors obtained from a fast-relative to, e.g., density-functional theory (DFT)-Hessian calculation using interatomic potentials. These potentials are based here on effective charges obtained from a DFT calculation of the ground state electronic charge density but could also be based on other, e.g., empiric approaches.  相似文献   

3.
In this article, we present a consistent derivation of a density functional theory (DFT) based embedding method which encompasses wave-function theory-in-DFT (WFT-in-DFT) and the DFT-based subsystem formulation of response theory (DFT-in-DFT) by Neugebauer [J. Neugebauer, J. Chem. Phys. 131, 084104 (2009)] as special cases. This formulation, which is based on the time-averaged quasi-energy formalism, makes use of the variation Lagrangian techniques to allow the use of non-variational (in particular: coupled cluster) wave-function-based methods. We show how, in the time-independent limit, we naturally obtain expressions for the ground-state DFT-in-DFT and WFT-in-DFT embedding via a local potential. We furthermore provide working equations for the special case in which coupled cluster theory is used to obtain the density and excitation energies of the active subsystem. A sample application is given to demonstrate the method.  相似文献   

4.
A formulation of time-dependent density functional theory (TDDFT) in the presence of a static imaginary perturbation is derived. A perturbational approach is applied leading to corrections to various orders in the quantities of interest, namely, the excitation energies and transition densities. The perturbed TDDFT equations are relatively straightforward to derive but the resulting expressions are rather cumbersome. Simplifications of these equations are suggested. Both the simplified and full expressions are used to obtain equations for first- and second-order corrections to the excitation energy, the first-order correction to the transition density, and the corrections for both quantities to first-order in two different perturbations. This formulation, called magnetically perturbed TDDFT, details how conventional TDDFT calculations can be corrected to allow for the inclusion of a static magnetic field and/or spin-orbit coupling.  相似文献   

5.
This paper generalizes the recently proposed approaches for calculating the derivative couplings between adiabatic states in density-functional theory (DFT) based on a Slater transition-state density to transitions such as singlet-singlet excitations, where a single-determinant ansatz is insufficient. The proposed approach is based on restricted open-shell Frank et al. [J. Chem. Phys. 108, 4060 (1998)] theory used to describe a spin-adapted Slater transition state. To treat the dependence of electron-electron interactions on the nuclear positions, variational linear-response density-functional perturbation theory is generalized to reference states with an orbital-dependent Kohn-Sham Hamiltonian and nontrivial occupation patterns. The methods proposed in this paper are not limited to the calculation of derivative coupling vectors, but can also be used for the calculation of other transition matrix elements. Moreover, they can be used to calculate the linear response of open-shell systems to arbitrary external perturbations in DFT.  相似文献   

6.
High-level ab initio calculations using multiconfigurational perturbation theory [complete active space with second-order perturbation theory (CASPT2)] were performed on the transition energy between the lowest high-spin (corresponding to (5T2g) in Oh) and low-spin (corresponding to 1A1g in Oh) states in the series of six-coordinated Fe(II) molecules [Fe(L)(NHS4)], where NHS4 is 2,2'-bis(2-mercaptophenylthio)diethylamine dianion and L=NH3, N2H4, PMe3, CO, and NO+. The results are compared to (previous and presently obtained) results from density functional theory (DFT) calculations with four functionals, which were already shown previously by Casida and co-workers [Fouqueau et al., J. Chem. Phys. 120, 9473 (2004); Ganzenmuller et al., ibid. 122, 234321 (2005); Fouqueau et al., ibid. 122, 044110 (2005); Lawson Daku et al., ChemPhysChem 6, 1393 (2005)] to perform well for the spin-pairing problem in these and other Fe(II) complexes, i.e., OLYP, PBE0, B3LYP, and B3LYP*. Very extended basis sets were used both for the DFT and CASPT2 calculations and were shown to be necessary to obtain quantitative results with both types of method. This work presents a sequel to a previous DFT/CASPT2 study of the same property in the complexes [Fe(H2O)6]2+, [Fe(NH3)6]2+, and [Fe(bpy)3]2+ [Pierloot et al., J. Chem. Phys. 125, 124303 (2006)]. The latter work was extended with new results obtained with larger basis sets and including the OLYP functional. For all considered complexes, the CASPT2 method predicts the correct ground state spin multiplicity. Since experimental data for the actual quintet-singlet (free) energy differences are not available, the performance of the different DFT functionals was judged based on the comparison between the DFT and CASPT2 results. From this, it was concluded that the generalized gradient OLYP functional performs remarkably well for the present series of ferrous compounds, whereas the success of the three hybrid functionals varies from case to case.  相似文献   

7.
8.
Recently, 5-chloromethylfurfural (CMF) was proposed as a central intermediate in the conversion of carbohydrate-based material into useful organic commodities. In the present work, we have calculated the thermochemistry using the highly accurate G4 theory and several state-of-art density functional theory (DFT) methods (e.g., X1, M06-2X, B2PLYP-D, and XYG3) for the conversion from CMF to 5-hydroxymethylfurfural (HMF) and levulinic acid (LA) in water, and that to biofuels 5-ethoxymethylfurfural (EMF) and ethyllevulinate (EL) in alcohol. New reaction mechanisms have been proposed, which complement the well-recognized Horvat mechanisms. The assessment of DFT methods suggested that XYG3 be a viable method for biomass related thermochemistry calculations.  相似文献   

9.
10.
A special theory of Brownian relativity was previously proposed to describe the universal picture arising in ideal polymer solutions. In brief, it redefines a Gaussian macromolecule in a 4-dimensional diffusive spacetime, establishing a (weak) Lorentz-Poincaré invariance between liquid and polymer Einstein's laws for Brownian movement. Here, aimed at inquiring into the effect of correlations, we deepen the extension of the special theory to a general formulation. The previous statistical equivalence, for dynamic trajectories of liquid molecules and static configurations of macromolecules, and rather obvious in uncorrelated systems, is enlarged by a more general principle of equivalence, for configurational statistics and geometrodynamics. Accordingly, the three geodesic motion, continuity, and field equations could be rewritten, and a number of scaling behaviors were recovered in a spacetime endowed with general static isotropic metric (i.e., for equilibrium polymer solutions). We also dealt with universality in the volume fraction and, unexpectedly, found that a hyperscaling relation of the form, (average size) x (diffusivity) x (viscosity)1/2 ~f(N0, phi0) is fulfilled in several regimes, both in the chain monomer number (N) and polymer volume fraction (phi). Entangled macromolecular dynamics was treated as a geodesic light deflection, entaglements acting in close analogy to the field generated by a spherically symmetric mass source, where length fluctuations of the chain primitive path behave as azimuth fluctuations of its shape. Finally, the general transformation rule for translational and diffusive frames gives a coordinate gauge invariance, suggesting a widened Lorentz-Poincaré symmetry for Brownian statistics. We expect this approach to find effective applications to solutions of arbitrarily large molecules displaying a variety of structures, where the effect of geometry is more explicit and significant in itself (e.g., surfactants, lipids, proteins).  相似文献   

11.
Existing density functional theory (DFT) methods are typically very effective in capturing dynamic correlation, but run into difficulty treating near-degenerate systems where static correlation becomes important. In this work, we propose a configuration interaction (CI) method that allows one to use a multireference approach to treat static correlation but incorporates DFT's efficacy for the dynamic part as well. The new technique uses localized charge or spin states built by a constrained DFT approach to construct an active space in which the effective Hamiltonian matrix is built. These local configurations have significantly less static correlation compared to their delocalized counterparts and possess an essentially constant amount of self-interaction error. Thus their energies can be reliably calculated by DFT with existing functionals. Using a small number of local configurations as different references in the active space, a simple CI step is then able to recover the static correlation missing from the localized states. Practical issues of choosing configurations and adjusting constraint values are discussed, employing as examples the ground state dissociation curves of H(2) (+), H(2), and LiF. Excellent results are obtained for these curves at all interatomic distances, which is a strong indication that this method can be used to accurately describe bond breaking and forming processes.  相似文献   

12.
13.
Time-dependent density functional theory (TDDFT) employing the exact-exchange functional (TDDFTx) has been formulated using the optimized effective potential method for the beta static hyperpolarizabilities, where it reduces to coupled-perturbed Kohn-Sham theory. A diagrammatic technique is used to take the functional derivatives for the derivation of the adiabatic second kernel, which is required for the analytical calculation of the beta static hyperpolarizabilities with DFT. The derived formulas have been implemented using Gaussian basis sets. The structure of the adiabatic exact-exchange second kernel is described and numerical examples are presented. It is shown that no current DFT functional satisfies the correct properties of the second kernel. Not surprisingly, TDDFTx, which corrects the self-interaction error in standard DFT methods and has the correct long-range behavior, provides results close to those of time-dependent Hartree-Fock in the static limit.  相似文献   

14.
The current study extends an earlier investigation (Bhattacharya, et al., Phys. Chem. Chem. Phys. 2012, 14, 6905) to further explore various photomagnetic and optical properties of bis‐imino nitroxide, that is, (IN)2‐based green fluorescent protein (GFP) chromophore coupled diradicals revealing new significant features. The conversion mechanisms of selected trans‐isomers into their corresponding cis‐conformers are discussed in detailed using a number of recently‐developed density functional theory (DFT) functionals based on the Minnesota suite of DFT‐models as well as using some other DFT functionals developed earlier. To provide a more in‐depth analysis of variations in magnetic properties as trans‐conformers (singlet ground‐state) convert into their cis‐analogues (triplet ground‐state), the changes in exchange magnetic coupling constants J are compared with the variation of the selected aromaticity indices. The aromaticity indices include the nuclear independent chemical shift [NICS(0)] values calculated at the center of ring structures and the harmonic oscillator model of aromaticity. Furthermore, the investigation of static nonlinear optical response properties in the (IN)2‐based GFP chromophore coupled diradicals reveal unusually large static first hyperpolarizabilities for these systems which is highly significant for practical applications in optics and optoelectronics. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
方亚辉  刘智攀 《电化学》2020,26(1):32-40
固液界面双电层在电化学中处于核心地位. 如何发展一个理论方法,在该方法的框架下计算双电层的平衡性质和动力学性质一直以来都是理论研究的难点和热点. 本文总结了最近十几年第一性原理计算方法在计算双电层平衡性质和电催化反应的进展,如热力学方法、反应中心模型以及双参考方法. 并进一步详细地阐述了基于周期性均匀介质溶剂化模型 ( DFT/CM-MPB)对于固液界面双电层的研究,该方法能够计算双电层的平衡性质(零电荷电势和微分电容)和表面相图,在此基础上能深入研究基元反应的电荷转移系数,并结合微观动力学推导出宏观的Tafel(电流-电势)曲线. 并列举了该方法对于重要电化学反应(如氢电极反应)的应用实例.  相似文献   

16.
A recently proposed new family of density functionals [S. Grimme, J. Chem. Phys. 124, 34108 (2006)] adds a fraction of nonlocal correlation as a new ingredient to density functional theory (DFT). This fractional correlation energy is calculated at the level of second-order many-body perturbation theory (PT2) and replaces some of the semilocal DFT correlation of standard hybrid DFT methods. The new "double hybrid" functionals (termed, e.g., B2-PLYP) contain only two empirical parameters that have been adjusted in thermochemical calculations on parts of the G2/3 benchmark set. The methods have provided the lowest errors ever obtained by any DFT method for the full G3 set of molecules. In this work, the applicability of the new functionals is extended to the exploration of potential energy surfaces with analytic gradients. The theory of the analytic gradient largely follows the standard theory of PT2 gradients with some additional subtleties due to the presence of the exchange-correlation terms in the self-consistent field operator. An implementation is reported for closed-shell as well as spin-unrestricted reference determinants. Furthermore, the implementation includes external point charge fields and also accommodates continuum solvation models at the level of the conductor like screening model. The density fitting resolution of the identity (RI) approximation can be applied to the evaluation of the PT2 part with large gains in computational efficiency. For systems with approximately 500-600 basis functions the evaluation of the double hybrid gradient is approximately four times more expensive than the calculation of the standard hybrid DFT gradient. Extensive test calculations are provided for main group elements and transition metal containing species. The results reveal that the B2-PLYP functional provides excellent molecular geometries that are superior compared to those from standard DFT and MP2.  相似文献   

17.
We use a hybrid density functional approach to investigate the microstructure and self-assembly of inhomogeneous rigid rodlike chains between two neutral surfaces, i.e., two hard walls. In the calculation, the rodlike molecule is modeled as a rigid rod linearly connected by the tangent sphere beads. The hybrid method combines a single-chain Monte Carlo (MC) simulation for the ideal-gas part of Helmholtz energy and a DFT approach for the excess Helmholtz energy. The DFT approach includes a modified fundamental measure theory for the excluded-volume effect, the first order thermodynamics perturbation theory for chain connectivity, and the mean field approximation for the van der Waals attraction. We investigate the effect of the chain length (i.e., aspect ratio) of the rodlike molecule and the separation between two surfaces on the microstructure and self-assembly of inhomogeneous rigid rodlike chains. For the athermal systems, the rodlike chain fluids present a smaller partitioning coefficient compared to the flexible chain fluids. For the thermal systems, lamellar thin films formed by the rigid rodlike molecules perpendicular to the neutral surface are observed. The effects of the head-head interaction and the separation on the self-assembly of the rodlike chain fluids in the slit are investigated.  相似文献   

18.
Based on the Hylleraas functional form, the second and third orders of Møller-Plesset perturbation theory are reformulated in terms of arbitrary (e.g., localized) internal orbitals, and atomic orbitals in the virtual space. The results are strictly equivalent to the canonical formulation if no further approximations are introduced. The new formalism permits the extension of the local correlation method to Møller-Plesset theory. It also facilitates the treatment of weak pairs at a lower (e.g., second order) level of theory in CI and coupled cluster methods. Based on our formalism, an MP2 gradient algorithm is outlined which does not require the storage of derivative integrals, integrals with three external MO indices, and, using the method of Handy and Schaefer, the repeated solution of the coupled-perturbed SCF equations.  相似文献   

19.
We study the mutual interactions of simple parallel polymers within the framework of density-functional theory (DFT). As the conventional implementations of DFT do not treat the long-range dispersion [van der Waals (vdW)] interactions, we develop a systematic correction scheme for the nonlocal energy contribution of the polymer interaction at the intermediate to the asymptotic separations. We primarily focus on the three polymers, polyethylene, isotactic polypropylene, and isotactic polyvinylchloride, but the scheme presented applies also more generally to other simple polymers. From first-principle calculations we extract the geometrical and electronic structures of the polymers and the local part of their interaction energy, as well as the static electric response. The dynamic electrodynamic response is modeled on the basis of these static calculations, from which the nonlocal vdW interaction of the polymers is extracted.  相似文献   

20.
We provide a rigorous proof that the Hohenberg-Kohn theorem holds for spin densities by extending Lieb's Legendre-transform formulation to spin densities. The resulting spin-density-functional theory resolves several troublesome issues. Most importantly, the present paper provides an explicit construction for the spin potentials at any point along the adiabatic connection curve, thus providing a formal basis for the use of exchange-correlation functionals of the spin density in the Kohn-Sham density-functional theory (DFT). The practical implications of this result for unrestricted Kohn-Sham DFT calculations is considered, and the existence of holes below the Fermi level is discussed. We argue that an orbital's energy tends to increase as its occupation number increases, which provides the basis for a computational algorithm for determining the occupation numbers in Kohn-Sham DFT and helps explain the origin of Hund's rules and holes below the Fermi level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号