首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alternating multilayer films composed of titania nanosheets and Zn porphyrins were prepared by use of a previously reported Langmuir-Blodgett film-transfer method in order to fabricate photoelectrochemical devices. Closely packed titania nanosheet monolayers on indium tin oxide (ITO), mica, and quartz surfaces strongly adsorbed cationic [5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrinatozinc]4+ (ZnTMPyP4+) by electrostatic interactions. The alternating deposition process afforded nanometer-scale multilayer films with the following structure: solid surface/(titania nanosheet/ZnTMPyP4+)n (n is the number of layers). The multilayer films were characterized by various physical measurements, including AFM, XRD, and UV-visible spectra. The visible-light irradiation of this multilayer film on an ITO electrode in the presence of triethanolamine as an electron donor yielded an anodic photocurrent. The action spectrum was consistent with the absorption spectrum of ZnTMPyP4+, which indicates that the photoexcitation of ZnTMPyP4+ is responsible for the photocurrent generation. However, the photocurrent density decreased with an increasing number of layers, which indicates that the harvesting of photoexcited electrons vertically through the titania nanosheets in the ITO/(titania nanosheet/ZnTMPyP4+)n structure was not efficient. To overcome this problem, the use of a lateral interlayer connection to all of the titania nanosheets with Ag paste was examined. As a result, a dramatic improvement in the photocurrent density was obtained. Thus, for efficient photocurrent generation with the titania nanosheet-ZnTMPyP4+ composite material, the lateral connection to all of the titania nanosheet layers is effective.  相似文献   

2.
Photoinduced hydrophilic conversion properties of titania nanosheets were investigated. A highly hydrophilic state was achieved on the monolayer film surface of titania nanosheets, the thickness of which is less than 1 nm. The hydrophilic conversion rate (k) for the monolayer film of titania nanosheets was proportional to the intensity (I) of irradiated light, suggesting that the hydrophilic conversion of the titania nanosheet surface proceeded under light-limited conditions even with a high concentration of photoexcited carriers. As the number of layers of titania nanosheets increased, the dependence behavior changed from k proportional, variant I(1.0) to k proportional, variant I(0.5), indicating that the recombination processes become dominant in the multilayer films of titania nanosheets. In-plane X-ray diffraction (XRD) analyses showed a very small but reproducible structural change of titania nanosheets upon UV irradiation.  相似文献   

3.
Density-functional theory calculations of (TiO2)n clusters (n = 1–5) in the gas phase and adsorbed on pristine graphene as well as graphene quantum dots are presented. The cluster adsorption is found to be dominated by van der Waals forces. The electronic structure and in particular the excitation energies of the bare clusters and the TiO2/graphene composites are found to vary largely in dependence on the size of the respective constituents. This holds in particular for the energy and the spatial localization of the highest occupied and lowest unoccupied molecular orbitals. In addition to a substantial gap narrowing, a pronounced separation of photoexcited electrons and holes is predicted in some instances. This is expected to prolong the lifetime of photoexcited carriers. Altogether, TiO2/graphene composites are predicted to be promising photocatalysts with improved electronic and photocatalytic properties compared to bulk TiO2.  相似文献   

4.
Nanostructured titania films are of growing interest due to their application in future photovoltaic technologies. Therefore, a lot of effort has been put into the controlled fabrication and tailoring of titania nanostructures. The controlled sol-gel synthesis of titania, in particular in combination with block copolymer templates, is very promising because of its high control on the nanostructure, easy application and cheap processing possibilities. This tutorial review gives a short overview of the structural control of titania films gained by using templated sol-gel chemistry and shows how this approach is extended by the addition of further functionality to the films. Different expansions of the sol-gel templating are possible by the fabrication of gradient samples, by the addition of a homopolymer, by the combination with micro-fluidics and also by the application of novel precursors for low-temperature processing. Moreover, hierarchically structured titania films can be fabricated via the subsequent application of several sol-gel steps or via the inclusion of colloidal templates in a one-step process. Integrated function in the block copolymer used in the sol-gel synthesis allows for the fabrication of an integrated blocking layer or an integrated hole-conductor. Both approaches grant a one-step fabrication of two components of a working solar cell, which make them very promising towards a cheap solar cell production route. Looking to the complete solar cell, the top contact is also of great importance as it influences the function of the whole solar cell. Thus, the mechanisms acting in the top contact formation are also reviewed. For all these aspects, characterization techniques that allow for a structural investigation of nanostructures inside the active layers are important. Therefore, the characterization techniques that are used in real space as well as in reciprocal space are explained shortly as well.  相似文献   

5.
Fluorescent composite materials of exfoliated titania nanosheets, Ti(0.91)O(2), and rare earth (RE) complexes, Eu(phen)(2)Cl(3).2H(2)O and Tb(phen)(2)Cl(3).2H(2)O (phen = 1,10-phenanthroline), were synthesized via flocculation between them. X-ray diffraction measurements and transmission electron microscopy observations confirmed a restacked lamellar structure for the composites, and elemental analysis revealed a high RE complex content of 15 wt %. The decomposition temperature of the complexes trapped in the composites was improved to 420 degrees C from 250 degrees C for the free form. The restacked composite composed of Ti(0.91)O(2) nanosheets and Eu(phen)(2) exhibited characteristic red emission from the complex, while the composite with Tb(phen)(2) gave featureless emission originated from the ligand. This phenomenon can be explained by a shift of triplet state level of the ligand after encapsulation in the host titania nanosheets. The quantum yield of europium complex in the composite was enhanced 1.6 times more than that of the pure complex.  相似文献   

6.
Nanocrystalline titania particles doped with ruthenium oxide have been prepared by the homogenous hydrolysis of TiOSO4 in aqueous solutions in the presence of urea. The synthesized particles were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM), Selected Area Electron Diffraction (SAED) and Nitrogen adsorption-desorption was used for surface area (BET) and porosity determination (BJH). The photocatalytic activity of the Ru-doped titania samples were determined by photocatalytic decomposition of Orange II dye in an aqueous slurry during irradiation at 365 nm and 400 nm wavelengths.   相似文献   

7.
The photocatalytic activity of thin ZnO films in the photocatalytic oxidation of the pharmaceuticals, paracetamol and chloramphenicol (Levomycetin) is reported. The films annealed at 500°C exhibit the highest activity. They have a wurtzite-like structure and consist of conducting branches, which are the spinodal decomposition products.  相似文献   

8.
New hybrid optical sensors have been prepared by grafting specifically designed fluorescent, functionalised, phosphorus-containing dendrimers onto a nanocrystalline mesoporous titania thin film formed by evaporation-induced self-assembly. The structural characterisation and optical behaviour of these new fluorescent probes have been studied both in solution and after being grafted onto an inorganic network, which resulted in the discovery of improved probing selectivity in the solid state. This new hybrid sensor exhibits high sensitivity to phenolic OH moieties (especially those from resorcinol and 2-nitroresorcinol), which induce the quenching of fluorescence more efficiently in the solid state than in solution. This effect is a result of the increased spatial proximity of the fluorescent molecules, which is induced by pore confinement that makes the formation of hydrogen bonds between the hydroxyl moieties of the quenchers and the carbonyl groups of the dendrimer easier.  相似文献   

9.
In this work the efficiency and physicochemical details of a thin film produced by help of a microwave assisted sol gel technique is compared to different commercial powders (Degussa P25 and Hombikat UV100) deposited on glass substrates. Furthermore, a supercritical produced TiO2 powder (SC 134) was included in the comparison.The prepared TiO2 films were characterized using XRD, XPS, AFM, DSC and DLS. The photocatalytic activity was determined using stearic acid as a model compound. Investigation of the prepared films showed that the Degussa P25 film and the sol–gel film were the most photocatalytic active films. The activity of the films was found to be related to the crystallinity of the TiO2 film and the amount of surface area and surface hydroxyl groups. Based on the XPS investigation of the films before and after UV irradiation it was suggested that the photocatalytic destruction of organic matter on TiO2 films proceeds partly through formation of hydroxyl radicals which are formed from surface hydroxyl groups created by interactions between adsorbed water and vacancies on the TiO2 surface. Furthermore a correlation between the amount of OH groups on the surface of the different TiO2 films and the photocatalytic activity was found.  相似文献   

10.
TiO2–hydroxyapatite (HAp) hybrid films were prepared by laminating TiO2 films with holes on the HAp film. We prepared transparent porous HAp film through spray pyrolysis deposition (SPD) method. The HAp possessed affinity against proteins. TiO2 films were prepared using phase separation of alkoxide. The holes provided from this process serve as an adsorption field and photocatalytic reaction field for reactants. This work demonstrated that the TiO2–HAp hybrid films produced by this process are candidates for photocatalytic decomposition of germs, viruses, and other biohazardous substances in the environment.  相似文献   

11.
In this study, synthesis, morphology, and properties of high refractive index photosensitive polyimide-nanocrystalline titania hybrid materials are reported. A soluble polyimide grafted with carboxylic acid or methacrylate groups (P1) was first synthesized from 4,4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), 3,5-diaminobenzoic acid (DABA), 4-aminobenzoic acid (4ABA), and 2-hydroxyethyl methacrylate (2HEMA). The residual carboxylic acid groups could undergo an esterification reaction with titanium butoxide to provide an organic-inorganic bonding. On the other hand, the grafted methacrylate groups rendered photosensitive property for photopatterning. A homogeneous hybrid solution was obtained through the formulation on different mole ratios of titanium butoxide/carboxylic acid, water/acid content in a mixed solvent. It was followed by spin-coating, photocuring and post-baking. The titania domain size in the hybrid materials analyzed by high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) was around 4-7 nm. The prepared optically transparent films had tunable refractive index (1.583 < n < 2.029), relatively good surface planarity and high thermal stability. A fine pattern with a line width of 50 μm was produced by direct lithographic process on the hybrid films. The present study demonstrates a novel approach for preparing high refractive index hybrid photosensitive materials with patternability.  相似文献   

12.
水中硝基酚的纳米TiO_2光催化降解   总被引:21,自引:0,他引:21       下载免费PDF全文
以主波长254nm的紫外灯作为光源,研究了锐钛型纳米TiO2对邻硝基苯酚、2,4-二硝基苯酚的光催化降解行为,并与普通TiO2作了对比;结果表明,纳米TiO2表现出很高的光催化活性,催化降解过程符合一级动力学规律。  相似文献   

13.
In this study, preparation of Sn doped (0–30 mol % Sn) TiO2 dip-coated thin films on glazed porcelain substrates via sol–gel process have been investigated. The effects of Sn content on the structural, optical, and photo-catalytic properties of applied thin films have been studied by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), field emission SEM (FE-SEM), and high resolution transmission electron microscopy (HR-TEM). Surface topography and surface chemical state of thin films were examined by atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS). XRD patterns showed an increase in peak intensities of the rutile crystalline phase by increasing the Sn dopant. The prepared Sn-doped TiO2 photo-catalyst films showed optical absorption edge in the visible light area and exhibited excellent photo-catalytic ability for degradation of methylene blue solution under UV irradiation. The result shows that doping an appropriate amount of Sn can effectively improve the photo-catalytic activity of TiO2 thin films, and the optimum dopant amount is found to be 15 mol%. The Sn4+ dopants substituted Ti4+ in the lattice of TiO2 and increased surface oxygen vacancies and the surface hydroxyl groups. TEM results showed small increase in planar spacing (was detected by HR-TEM caused by Sn dopants in titania based crystals).  相似文献   

14.
Composite films of a meso-(tetramethylpyridinium)porphyrin (TMPyP) hybrid incorporated in mesoporous silica (MPS) and cast on a methyl viologen (MV2+)/titania nanosheet hybrid were synthesized and a light-induced charge separation between the two could be observed. These composite thin films were able to initiate a one-electron reduction of the MV2+ ions accompanied by the simultaneous decomposition of the TMPyP organic dye within the mesoporous silica channels.  相似文献   

15.
A perpendicular mesoporous platinum electrode with a flat surface is successfully synthesized by electrodeposition using titania nanopillars as template, and the electrochemical studies indicate that this material is a promising catalytic electrode for fuel cells because of its high surface area and perpendicular nanopores.  相似文献   

16.
First-order kinetics was found for the photocatalytic oxidation of catechol on TiO2. Kinetic constants calculated from the Langmuir-Hinshelwood equation are: k=2.03x10-8 mol dm-3 s-1; Kads=1.63x104 dm3 mol-1. Full catechol mineralization is a multistep reaction, 1,2,4-benzenetriol and glycol are the main intermediates. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
The results of studies of the structure and physicochemical properties of nanostructured films based on refractory carbides, borides, and nitrides are generalized. The possibility to obtain diamond-level hardness values is considered. The thermal stability of the hardness and the nanostructure of the films is discussed. The phase diagrams of refractory compounds in the nanocrystalline state are considered. The results of high-temperature oxidation of nanocrystal-line and amorphous films are described.  相似文献   

18.
In this report, the use of a simple and versatile technique of templated electrodeposition through colloidal templates to produce nanostructured films of Pt and Au with regular submicron spherical holes arranged in a hexagonal close-packed structure is described. The templates were produced by self assembly of a monodispersed suspension of polystyrene spheres on gold substrates using capillary forces. The self assembly process was modified through the chemical modification of the gold substrate with cysteamine thiol. Films of Pt and Au were prepared by electrochemical deposition through the template. The electrochemical deposition charge and the current time curve were used to control the film height with a precision of approximately 10 nm. The colour of the nanostructured films changed as the film thickness was changed. On the other hand, high surface area of the nanostructured Pt film on top of the gold substrate was calculated using electrochemical cyclic voltammogram. About 55 roughness factor was obtained. SAXS measurements showed strong scattering at low angles indicating the presence of a well-ordered mesostructure.  相似文献   

19.
TiO2薄膜光催化臭氧化邻苯二酚   总被引:9,自引:1,他引:9  
 研究了用碳黑改性的TiO2薄膜催化剂光催化氧化邻苯二酚的反应.结果表明,臭氧投加量对邻苯二酚的降解和总有机碳(TOC)的去除有重要影响,与光催化氧化(TiO2/UV/O2)、单独臭氧化(O3)和光助臭氧化(UV/O3)过程相比,邻苯二酚光催化臭氧化(TiO2/UV/O3)过程能明显增大TOC的去除率.动力学研究表明,邻苯二酚完全氧化过程遵循零级反应,TOC的降解仅取决于臭氧或氧气的浓度而与邻苯二酚的浓度无关;邻苯二酚在TiO2/UV/O3作用下完全氧化的速率常数是UV/O3作用下的1.32~1.80倍(在相同的臭氧浓度下),是TiO2/UV/O2作用下最大速率常数的2.56~5.36倍,是UV/O2作用下最大速\r\n率常数的5.47~11.4倍.  相似文献   

20.
掺铁TiO2气相光催化降解正己烷的研究   总被引:6,自引:0,他引:6  
蔡邦宏  叶兴南  乐英红  高滋 《化学通报》2003,66(11):789-793
利用钛酸丁酯水解浸渍、共沉淀、水热等方法制备了掺铁TiO2纳米复合粉体材料并通过XRD、BET、TEM等手段作了表征,研究了掺铁TiO2对气相光催化降解正己烷反应的活性并和商品TiO2 Degussa P-25作了比较,考察了制法、掺铁量、焙烧温度等的影响。结果表明,和大多数液相反应不同,铁的掺入抑制了TiO2对正己烷的气相光催化降解。水热处理能较大程度地改善掺铁和未掺铁TiO2的光催化性能。P-25对正己烷的气相光催化活性则明显小于未掺铁TiO2样品,也小于某些掺铁样品。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号