首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EQCM experiments were made on PEDOT films exposed to LiClO4/CH3CN under permselective conditions and subjected to cyclic voltammetry in the potential range corresponding to p-doping. Current and frequency responses were used to generate time-resolved ion and solvent flux data as functions of potential. These fluxes normalize with respect to scan rate during p-doping and undoping, but the responses in the two directions are not mirror images. The results lead to the following mechanistic conclusions. Coupled electron/anion transfer is the first, and non-rate limiting, step in both redox switching directions, but involves differently solvated and configured polymer in the two directions. Solvent transfer and polymer reconfiguration follow the charge transfer steps, but are kinetically inseparable on the timescales accessed. This mechanism can be visualized by a scheme-of-squares representation whose two coordinates are “coupled electron/anion transfer” and “coupled solvent transfer/polymer reconfiguration”. The data analysis protocol provides a powerful approach to identifying mechanistic pathways, particularly in situations corresponding to partial film redox conversion.  相似文献   

2.
We demonstrated here a unique method to produce a highly stable and conductive polypyrrole (PPY) nanoparticle film. The procedure entails controlling the redox switching and the electrochemical synthesis of PPY. PPY was synthesized at a very low forming potential or reaction rate in nonaqueous CH2Cl2 solvent to promote the PPY nanoparticle formation. Then its property was further optimized by first electrochemically reducing it at a hydrogen evolution potential in a neutral 0.1 M NaClO4, then in a slightly acidic 0.05 M asparagine electrolyte. The PPY nanoparticle thin film was characterized by AFM, UV-vis and EQCM. The procedures described here have proven to be reproducible. The data provided by the EQCM shows a reversible doping and undoping mechanism of asparagine indicating the presence of a highly conductive PPY variant. Both UV-vis and electrochemical characterization suggest that the PPY film made using our approach has excellent redox activity as well as high stability when characterized in asparagine solution. The reversible doping and undoping of asparagine during redox switching shows great potential of these PPY nanoparticle films as biological membranes for a broad range of biological applications.  相似文献   

3.
Platinum phthalocyanine (PtPc) microcrystal films undergo three successive electrochemical oxidations. Each of these processes is associated with anion insertion or doping. The reverse process of anion insertion, undoping, has been investigated using electrochemical impedance spectroscopy and in-situ UV–vis spectroscopy. The impedance theory of conductive polymer films developed by Vorotyntsev et al. is applicable to this process. The kinetics of the undoping process depend upon the previous oxidative treatment, and thus the doping level. Three different states of the film can be demarcated, depending on the degree of oxidation (and thus the degree of doping) of the PtPc film. These are called the lightly doped, the conductive and the over-doped state, respectively. For lightly doped films, the film conductivity, the redox capacitance, the diffusion coefficient for charge transport and the rate of electrochemical reaction all decrease with decreasing potential. The film conductivity depends upon the concentration of free charge carriers. For the more highly doped conductive film, all of the above parameters are greatly enhanced, and the electrochemical reaction is accelerated and proceeds at a very high rate. The potential dependence of the redox capacitance and the diffusion coefficient depends on the type of anion. During undoping at 0 V, unusually high diffusion coefficients with a magnitude of order 10−2 cm2 s−1 are observed and are attributed to the strong interactions between the electronic and ionic carriers during the phase transformation. For the over-doped film, undoping leads to an increase in the film conductivity and electrochemical reaction rate. The potential dependence of the redox capacitance and diffusion coefficients for charge transport implies strong interactions within the film. Hypsochromic shifts in UV–vis spectra with decreasing potential indicate conformational relaxation during the undoping process. SEM investigation confirms that the doped film swells during the de-doping process.  相似文献   

4.
Redox polyelectrolyte multilayers have been assembled with use of the layer-by-layer (LBL) deposition technique with cationic poly(allylamine) modified with Os(bpy)(2)ClPyCHO (PAH-Os) and anionic poly(styrene)sulfonate (PSS) or poly(vinyl)sulfonate (PVS). Different behavior has been observed in the formal redox potential of the Os(II)/Os(III) couple in the polymer film with cyclic voltammetry depending on the charge of the outermost layer and the electrolyte concentration and pH. The electrochemical quartz crystal microbalance (EQCM) has been used to monitor the exchange of ions and solvent with the external electrolyte during redox switching. At low ionic strength Donnan permselectivity of anions or cations is apparent and the nature of the ion exclusion from the film is determined by the charge of the topmost layer and solution pH. At high electrolyte concentration Donnan breakdown is observed and the osmium redox potential approaches the value for the redox couple in solution. Exchange of anions and water with the external electrolyte under permselective conditions and salt and water under Donnan breakdown have been observed upon oxidation of the film at low pH for the PAH-Os terminating layer. Moreover, at high pH values and with PVS as the terminating layer EQCM mass measurements have shown that cation release was masked by water exchange.  相似文献   

5.
Determining whether a protein regulates its net electrostatic charge during electron transfer (ET) will deepen our mechanistic understanding of how polypeptides tune rates and free energies of ET (e.g., by affecting reorganization energy, and/or redox potential). Charge regulation during ET has never been measured for proteins because few tools exist to measure the net charge of a folded protein in solution at different oxidation states. Herein, we used a niche analytical tool (protein charge ladders analyzed with capillary electrophoresis) to determine that the net charges of myoglobin, cytochrome c, and azurin change by 0.62±0.06, 1.19±0.02, and 0.51±0.04 units upon single ET. Computational analysis predicts that these fluctuations in charge arise from changes in the pKa values of multiple non‐coordinating residues (predominantly histidine) that involve between 0.42–0.90 eV. These results suggest that ionizable residues can tune the reactivity of redox centers by regulating the net charge of the entire protein–cofactor–solvent complex.  相似文献   

6.
In a previous study we reported that fluorine substitution at the carbon positions of aziridine results in profound enhancements of the rate of reaction with ammonia, a typical nucleophile, in the gas phase. In this study the investigation is extended to include chloro- and bromoaziridines. Because syntheses are largely performed in the condensed phase, the present computational investigation [(MP2(Full)/6-311++G(d,p)//MP2(Full)/6-31+G(d) level] was conducted with three typical solvents that cover a wide range of polarity: THF, CH3CN, and H2O. Nucleophiles can react with haloaziridines 1 by displacing a substituted amide ion by means of an SN2 mechanism (pathway a), producing 1,2-diaminohaloethanes (from the initially formed dipolar species 2). Alternatively, a rearrangement mechanism involving rate-determining departure of a halide ion (pathway b) to form an imidoyl halide, 3, is possible. Transition-state theory was used to compute relative reaction rates of these mechanistic possibilities and to assess the role of the halogen substituents and the reaction solvent. Gas-phase results provided the basis of mechanistic insights that were more apparent in the absence of intermolecular interactions. Fluoroaziridines were found to react at accelerated rates relative to aziridine exclusively by means of the a Menshutkin-type mechanism (SN2) in each solvent tested, while the reactions of the chloro- and bromoaziridines could be directed toward 2 in the highly nonpolar solvent, cyclohexane, or toward 3 in the more polar solvents. An assessment is made of the feasibility of using this chemistry of the haloazirdines in the synthetic laboratory.  相似文献   

7.
In this work, we report an unexpected but significant improvement of the redox behavior of conducting polyaniline (PAN) films by trapping intrinsically nonconducting poly(vinyl alcohol) (PVA) in the matrix of the polymer acting as stiffening and/or cross-linking agents. Film structural stiffening of PAN/PVA inclusion was studied in relation to film compositional dynamics. PAN and PAN/PVA composite films were potentiodynamically deposited using high-frequency electrochemical quartz crystal microbalance under electrochemical potentiodynamic control. From the simultaneously obtained measurements of nanogravimetric and cyclic voltammetric data, it has been found that the presence of PVA in the deposition solution increased the rate of PAN film growth as a function of PVA concentration. Characterization of the resultant composite films in monomer-free acidic electrolyte solutions showed significantly enhanced redox behavior of PAN/PVA composite films (with different PVA contents) compared to pure PAN by a factor of ~2–4. For the study of structure–composition relationships of composite polymer films, fluxes of instantaneous mobile species dynamics (ion/solvent) as a function of film redox conversion and potential cycling were correlated with film structural stiffening and the observed unusual redox enhancement of PAN/PVA composite films. Using various experimental timescales, we were able to resolve bound (associated with ion transfer) and free solvent compositional dynamics (associated with thermodynamic activity balance).  相似文献   

8.
The structural and thermodynamic properties of Na+(CH3CN)n, I-(CH3CN)n, and NaI(CH3CN)n clusters have been investigated by means of room-temperature Monte Carlo simulations with model potentials developed to reproduce the properties of small clusters predicted by quantum chemistry. Ions are found to adopt an interior solvation shell structure, with a first solvation shell containing approximately 6 and approximately 8 acetonitrile molecules for large Na+(CH3CN)n and I-(CH3CN)n clusters, respectively. Structural features of Na+(CH3CN)n are found to be similar to those of Na+(H2O)n clusters, but those of I-(CH3CN)n contrast with those of I-(H2O)n, for which "surface" solvation structures were observed. The potential of mean force calculations demonstrates that the NaI ion pair is thermodynamically stable with respect to ground-state ionic dissociation in acetonitrile clusters. The properties of NaI(CH3CN)n clusters exhibit some similarities with NaI(H2O)n clusters, with the existence of contact ion pair and solvent-separated ion pair structures, but, in contrast to water clusters, both types of ion pairs adopt a well-defined interior ionic solvation shell structure in acetonitrile clusters. Whereas contact ion pair species are thermodynamically favored in small clusters, solvent-separated ion pairs tend to become thermodynamically more stable above a cluster size of approximately 26. Hence, ground-state charge separation appears to occur at larger cluster sizes for acetonitrile clusters than for water clusters. We propose that the lack of a large Na+(CH3CN)n product signal in NaI(CH3CN)n multiphoton ionization experiments could arise from extensive stabilization of the ground ionic state by the solvent and possible inhibition of the photoexcitation mechanism, which may be less pronounced for NaI(H2O)n clusters because of surface solvation structures. Alternatively, increased solvent evaporation resulting from larger excess energies upon photoexcitation or major solvent reorganization on the ionized state could account for the observed solvent-selectivity in NaI cluster multiphoton ionization.  相似文献   

9.
The dinuclear complex [{Ru(CN)(4)}(2)(μ-bppz)](4-) shows a strongly solvent-dependent metal-metal electronic interaction which allows the mixed-valence state to be switched from class 2 to class 3 by changing solvent from water to CH(2)Cl(2). In CH(2)Cl(2) the separation between the successive Ru(ii)/Ru(iii) redox couples is 350 mV and the IVCT band (from the UV/Vis/NIR spectroelectrochemistry) is characteristic of a borderline class II/III or class III mixed valence state. In water, the redox separation is only 110 mV and the much broader IVCT transition is characteristic of a class II mixed-valence state. This is consistent with the observation that raising and lowering the energy of the d(π) orbitals in CH(2)Cl(2) or water, respectively, will decrease or increase the energy gap to the LUMO of the bppz bridging ligand, which provides the delocalisation pathway via electron-transfer. IR spectroelectrochemistry could only be carried out successfully in CH(2)Cl(2) and revealed class III mixed-valence behaviour on the fast IR timescale. In contrast to this, time-resolved IR spectroscopy showed that the MLCT excited state, which is formulated as Ru(III)(bppz˙(-))Ru(II) and can therefore be considered as a mixed-valence Ru(ii)/Ru(iii) complex with an intermediate bridging radical anion ligand, is localised on the IR timescale with spectroscopically distinct Ru(ii) and Ru(iii) termini. This is because the necessary electron-transfer via the bppz ligand is more difficult because of the additional electron on bppz˙(-) which raises the orbital through which electron exchange occurs in energy. DFT calculations reproduce the electronic spectra of the complex in all three Ru(ii)/Ru(ii), Ru(ii)/Ru(iii) and Ru(iii)/Ru(iii) calculations in both water and CH(2)Cl(2) well as long as an explicit allowance is made for the presence of water molecules hydrogen-bonded to the cyanides in the model used. They also reproduce the excited-state IR spectra of both [Ru(CN)(4)(μ-bppz)](2-) and [{Ru(CN)(4)}(2)(μ-bppz)](4-) very well in both solvents. The reorganization of the water solvent shell indicates a possible dynamical reason for the longer life time of the triplet state in water compared to CH(2)Cl(2).  相似文献   

10.
The electrochromic materials have received immense attention for the fabrication of smart optoelectronic devices. The alteration of the redox states of the electroactive functionalities results in the color change in response to electrochemical potential. Even though transition metal oxides, redox-active small organic molecules, conducting polymers, and metallopolymers are known for electrochromism, advanced materials demonstrating multicolor switching with fast response time and high durability are of increasing demand. Recently, two-dimensional covalent organic frameworks (2D COFs) have been demonstrated as electrochromic materials due to their tunable redox functionalities with highly ordered structure and large specific surface area facilitating fast ion transport. Herein, we have discussed the mechanistic insights of electrochromism in 2D COFs and their structure-property relationship in electrochromic performance. Furthermore, the state-of-the-art knowledge for developing the electrochromic 2D COFs and their potential application in next-generation display devices are highlighted.  相似文献   

11.
Polypyrrole-polystyrene sulfonic acid (PPy-PSSA) composite films have been electrosynthesized in an aqueous solution of PSSA. The electro-active films exhibit cation exchange during the redox process. Infrared, Raman and energy-dispersive spectroscopic results demonstrated that the polyanion of PSS^- is co-deposited into the PPy matrix and couldn‘t be stripped from the film extensively by dedoping. The doping level together with dipolaron content of the PPy-PSSA composite film increases during electrochemical polymerization process. SEM images revealed that the composite film has smooth and compact morphology and AFM pictures suggested that PPy chains are possibly grown perpendicular to the electrode surface. TGA tests indicated that the composite films has much better thermal stability than that of pure PPy.Furthermore, electrochemical studies showed that the relaxation process at certain holding potential has great effect on the shape of the cyclic voltammetric curves of PPy-PSSA composite film. The composite film exhibits cation and anion exchange during the redox process after undergoing the relaxation step. It is more difficult for divalent anion to enter the polymer matrix than a univalent ion, and a large cation such as (CH3CH2CH2CH2)4N^ cannot be involved in the ion exchange process.  相似文献   

12.
Carborane-functionalized conducting polymer films have been electrogenerated in dichloromethane from the anodic oxidation of ortho- (1), meta- (3) and para-carborane (4) isomers linked to two 2-thienyl units. The corresponding electrochemical response was characterized by a broad reversible redox system corresponding to the p-doping/undoping of the polythiophene backbone, the formal potential of which increased in the order poly(1) < poly(3) < poly(4), from ca. 0.50 to 1.15 V vs Ag/Ag(+) 10(-2) M. From further UV-visible spectroscopy analysis, the optical band gap was estimated at 1.8, 2.0 and 2.2 eV for poly(1), poly(3) and poly(4), respectively. The more conjugated and electroconductive character of poly(1) is ascribed to a more planar conformation of the conjugated backbone resulting from an intramolecular β-β' cyclization reaction in the monomer, consequently yielding a fused conjugated polymer. Molecular modeling calculations using the DFT method support this hypothesis. The surface topography and maps of the conductive domains of the electropolymerized films were evaluated by conducting probe AFM. The three polymers exhibit fairly similar morphological characteristics and a surface roughness of ~2 nm. Current-voltage (I-V) characteristics of conducting AFM tip-carborane polymer-ITO junctions showed that poly(1) had the highest conductivity.  相似文献   

13.
二茂铁衍生物光学特性的氧化还原开关效应   总被引:5,自引:0,他引:5  
设计合成了三种具有推拉电子取代基的二茂铁衍生物D-Fc-R(1), D-Fe-A1(2), [D-Fc-A2(3)N-C6H4-CH=CH, R :CH2OH, A1 : CHO, A2 : CH=C(CN)2], 并对其循环伏安及光谱电化学行为进行了研究。三种衍生物均出现两个氧化还原电时,1的两个电对均可逆, 单扫第一电对, 2的第一电对是可逆, 3的第一电对是准可逆, D-Fc^+-R在613nm, D-Fc^+-A1在705nm有强LMCT带, 具有良好的光学特性氧化还原开关效应。  相似文献   

14.
The consecutive fragmentation of ionized trimethyl vanadate(V), OV(OCH3)3 (1), is examined by experiment and theory. After an elimination of formaldehyde from the molecular ion 1+, subsequent dissociations proceed via losses of first H2 and then two molecules of formaldehyde to finally yield the VOH+ cation; these redox reactions involve the V(II)/V(IV) manifold. At elevated energies, expulsion of CH3O* from 1+ can efficiently compete to afford OV(OCH3)2+, a formal V(V) compound, from which subsequent losses of H2 and two units of CH2O lead to bare VO+, thereby exploring the V(III)/V(V) redox manifold. Experiments using complementary mass spectrometric techniques, i.e., neutralization-reionization experiments and ion/molecule reactions, in conjunction with extensive computational studies provide deep insight into the ion structures and the relative energetics of these dissociation reactions. In particular, a quantitative energetic scheme is obtained that ranges from neutral OV(OCH3)3 all the way down to the quasi-terminal fragment ions VOH+ and VO+, respectively.  相似文献   

15.
研究了层层自组装技术制备的导电聚合物SPAn/纳米硫化镉复合膜的电化学和光电化学性质。单层SPAn膜在0.1mol/L的LiClO4/乙腈电解液中有弱的阴极光电流效应,为p型半导体;化学沉淀CdS膜为n型半导体。复合膜PSS/Q-CdS仅有阳极光电流效应,为CdS的n型半导体。自组装复合膜SPAn/Q-CdS有两种不同类型的光电响应,在阴极区(导电聚合物SPAn处于未掺杂状态)具有阴极光电流,在阳极区(SPAn处于导电状态)具有阳极光电流;导电聚合物的电化学状态对复合膜的光电化学性质有决定性作用。  相似文献   

16.
Second-order rate constants have been determined for the title reactions in OH(-)/H(2)O and in OH(-)/ (CH(3)CN/H(2)O) [30/70, 60/40, and 85/15 (v/v) mixtures]. A relatively small increase in reactivity is observed for the four substrates upon increasing the percentage of CH(3)CN in the solvent mixture. The methyl activating factors (/) are also slightly affected by the solvent composition. On the other hand, the high acceleration of the reaction by methylation of the pyridine ring amounts to 10(4)-10(6) according to an E1cb mechanism.  相似文献   

17.
The cyclic voltammetry responses and the redox switching dynamics of poly(3,4-ethylenedioxythiophene) (PEDOT) in a room-temperature ionic liquid, 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)amide (EMImTf2N), were investigated. The shape of the cyclic voltammograms showed two anodic and two cathodic peaks. These peak currents varied linearly with the scan rate indicating a thin-layer behaviour. No memory effects were observed during the cyclic voltammetry experiments in this ionic liquid. On the other hand, the redox switching dynamics of PEDOT were studied by means of potential step experiments. The analysis of chronocoulograms in term of RC-circuits indicated that the time dependence of the charge transferred during the potential step showed two time constants. These results were consistent with the postulated structure or morphology of the PEDOT film which contained two types of coexisting zones: a compact and an open structures.  相似文献   

18.
We demonstrate that the electrical "switching" behavior of single molecules connected between two electrode contacts can be controlled by altering their structure and electrochemical characteristics. The electrical properties of gold|molecule|gold single molecule junctions incorporating HS(CH2)6-X-(CH2)6SH, where X = viologen (4,4'-bipyridinium) or pyrrolotetrathiafulvalene, are determined using a scanning tunneling microscopy based technique. The switching behavior, controlled through a tuneable electrochemical gate, changes from an on-off response (viologen) to an off-on-off response (pyrrolotetrathiafulvalene) on changing the central redox group. In contrast, the electrical properties of junctions incorporating redox-inactive HS(CH2)6-1,4-C6H4-(CH2)6SH do not alter significantly as a function of applied potential.  相似文献   

19.
The gas-phase reactions of F(-)(CH(3)OH) and F(-)(C(2)H(5)OH) with t-butyl bromide have been investigated to explore the effect of the solvent on the E2 transition state. Kinetic isotope effects (KIEs) were measured using a flowing afterglow-selected ion flow tube (FA-SIFT) mass spectrometer upon deuteration of both the alkyl halide and the alcohol. Kinetic isotope effects are significantly more pronounced than those previously observed for similar reactions of F(-)(H(2)O) with t-butyl halides. KIEs for the reaction of F(-)(CH(3)OH) with t-butyl bromide are 2.10 upon deuteration of the neutral reagent and 0.74 upon deuteration of the solvent. KIEs for the reaction of F(-)(C(2)H(5)OH) with t-butyl bromide are 3.84 upon deuteration of the neutral reagent and 0.66 upon deuteration of the solvent. The magnitude of these effects is discussed in terms of transition-state looseness. Additionally, deuteration of the neutral regent and deuteration of the solvent do not produce completely separable isotope effects, which is likely due to a crowded transition state. These results are compared to our previous work on S(N)2 and E2 solvated systems.  相似文献   

20.
The concentration profiles of C104 and Li+ into the poly(3-methylthiophene) structure were referred to the 3-methylthiophene concentration for several doping levels during the doping and the undoping processes. The ion amount is very different in the polymer bulk and in a surface region of about 150 Å thickness. The cation is shown to play a role in the first step of the undoping mechanism. The paired ions concentration was determined and an actual doping ratio could be deduced which is different from that calculated by coulometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号