首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental investigation has been carried out to study the enhancement in heat transfer coefficient by inserting coiled wire around the outer surface of the inner tube of the double-pipe heat exchanger. Insulated wires, with a circular cross-section of 2 mm diameter, forming a coil of different pitches (p = 6, 12, and 20 mm), were used as turbulators. The investigation is performed for turbulent water flow in a double-pipe heat exchanger with cold water in the annulus space for both parallel and counter flows. The experiments were performed for Reynolds numbers ranging from 4,000 to 14,000. The experimental results reveal that the use of coiled circular wires leads to a considerable increase in heat transfer coefficients compared with a smooth wall tube for both parallel and counter water flows. The mean Nusselt number increases with Reynolds number and pitch. The convective heat transfer coefficient for a turbulent water flow increases for all coiled wire pitches, with the highest enhancement of about 450% for counter flow and 400% for the parallel flow. New correlations for mean relative Nusselt numbers at different coiled wire pitches are provided.  相似文献   

2.
本文对自制微管换热器的流动与传热性能进行了实验研究。提出了微细圆管换热器管内单相强制对流换热努摩尔数准则式,并与已有相关文献提出的关联式做了对比,结果表明:微管管内换热系数比常规尺度计算公式预测值要高,同时本文分析了微细管内的压力降、摩擦阻力系数f随雷诺数的关系。研究表明微管管内压降、摩擦系数都比常规尺度预测值要高。  相似文献   

3.
根据某1 t/h燃煤工业锅炉空气预热器的热力参数,设计并搭建了一套颗粒帘空气预热器模拟实验系统,研究了不同进气温度Tg0(150~300℃)、进气速度Vg0(0.9~1.5m/s)、颗粒帘进口厚度b0 (60~180 mm)、颗粒粒径dp(150~212μm)以及不同颗粒质量流量ms (550~2150 g/s)工况条件下热空气与进口温度tp0=20℃的硅砂颗粒帘间的换热特性。结果表明:影响颗粒帘换热器中气粒两相换热特性因素的重要性次序为进气温度、进气速度、颗粒质量流量、颗粒粒径、颗粒帘进口厚度;换热端差最低可至4.5℃,最大可达87℃;颗粒帘及颗粒帘出口气流的温度沿颗粒下落方向在前期上升迅速(186~475℃/m)而后期上升比较缓慢(60~108℃/m),并且在0~0.5 m和0.5~1.0 m的高度范围可分别用线性和对数方程来描述。  相似文献   

4.
5.
K. Koyama  Y. Asako 《实验传热》2013,26(2):130-143
Heat transfer characteristics of a gas-to-gas counterflow microchannel heat exchanger have been experimentally investigated. Temperatures and pressures at inlets and outlets of the heat exchanger have been measured to obtain heat transfer rates and pressure drops. The heat transfer and the pressure drop characteristics are discussed. Since the partition wall of the heat exchanger is thick compared with the microchannel dimensions, a simple heat exchange model with constant wall temperature is proposed to predict the heat transfer rate. The predicted heat transfer rate using the constant wall temperature model agrees well with the experimental results.  相似文献   

6.
Forced convection heat transfer from a helically coiled heat exchanger embedded in a packed bed of spherical glass particles was investigated experimentally. With dry air at ambient pressure and temperature as a flowing fluid, the effect of particle size, helically coiled heat exchanger diameter, and position was studied for a wide range of Reynolds numbers. It was found that the particle diameter, the helically coiled heat exchanger diameter and position, and the air velocity are of great influence on the convective heat transfer between the helically coiled heat exchanger and air. Results indicated that the heat transfer coefficient increased with increasing the air velocity, increasing helically coiled heat exchanger diameter, and decreasing the particle size. The highest heat transfer coefficients were obtained with the packed-bed particle size of 16 mm and heat exchanger coil diameter of 9.525 mm (1/4 inch) at a Reynolds number range of 1,536 to 4,134 for all used coil positions in the conducted tests. A dimensionless correlation was proposed for Nusselt number as a function of Reynolds number, particle size, coil size, and coil position.  相似文献   

7.
Abstract

This article presents the empirical study of a heat pipe heat exchanger that was directly experiencing the ambient tropical air in its evaporator section. The performance of the heat pipe heat exchanger was monitored during two weeks of operation to determine the performance curves. The temperature of return air was controlled at about 22°C as the representative temperature of inside air, and a face velocity of 2 m/s on the heat pipe heat exchanger coil was established for this purpose. It was found that for the present investigation, the heat pipe heat exchanger can pay for itself in 1.5 years.  相似文献   

8.
This article experimentally and numerically analyzes the effect of turbulators with different geometries (Type I, Type II, Type III, and Type IV) located at the inlet of the inner pipe in a concentric-type heat exchanger. Experiments were performed at parallel-flow conditions in the same and opposite directions to investigate the impact of manufactured turbulators on heat transfer and pressure drop. In the numerical study, ANSYS 12.0 Fluent code program was used, and basic protection equations were solved in the steady-state, three-dimensional, and turbulence-flow conditions. Results were obtained from numerical analysis conducted at different flow values of air (7, 8, 9, 10, 11, and 12 m3/h). The distribution of temperature, velocity, and pressure was demonstrated as a result of numerical analyses. Experimental and numerical results were compared, and it was observed that they were in conformity with each other. When the data obtained from the analyses were examined, the highest heat transfer, pressure drop, and friction factor increase were detected to be in the Type IV turbulator.  相似文献   

9.
In this work, a double-layered microchannel heat exchanger is designed for investigation on gas-to-gas heat transfer. The micro-device contains 133 parallel microchannels machined into a polished polyether ether ketone plate for both the hot side and cold side. The microchannels are 200 μm high, 200 μm wide, and 39.8 mm long. The design of the micro-device allows tests with partition foils in different materials and of flexible thickness. A test rig is developed with the integration of customized pressure and temperature sensors for in situ measurements. Experimental tests on the counter-flow micro heat exchanger have been carried out for five different partition foils and various mass flow rates. The experimental results, in terms of pressure drop, heat transfer coefficients, and heat exchanger effectiveness are discussed and compared with the predictions of the classic theory for conventionally sized heat exchangers.  相似文献   

10.
D. Calamas 《实验传热》2015,28(3):205-221
System performance of a solid single-fluid compact heat exchanger with tree-like flow passages has been experimentally examined. The results, presented in the form of commonly defined dimensionless parameters, demonstrate that system performance can be characterized in a mode similar to traditional compact heat exchanger designs. Pressure forces were found to dominate inertia forces at low Reynolds numbers. Correlations of the Euler number, Nusselt number, Colburn factor, and friction factor as a function of Reynolds number were utilized to compare system performance to traditional two-fluid compact heat exchangers.  相似文献   

11.
本文针对普通住宅房间设计了一台新型平板式热管换热器,该换热器结构紧凑、体积小巧。为研究该换热器的使用条件,本文开展了不同工质(R113、R141b以及这两种工质的混合物)对该热管换热器换热效率影响的实验研究。整个实验在夏季工况下进行,热管真空度为1×10~(-3)Pa,充液量(灌入热管换热器内的工质体积与热管换热器体积之比)为1/3。实验结果表明:该热管换热器热回收效率较高。在整个风量范围内,R141b作为工质的热管换热器换热效果最好,最高效率达到了58.2%。  相似文献   

12.
Liquid crystal thermography was used in a water-operated concentric tube-in-tube heat exchanger to determine local annular heat transfer coefficients at the inlet region. An annular diameter ratio of 0.54 was considered with the inlet and outlet orientated perpendicularly to the axial flow direction. Both heated and cooled cases were considered at annular Reynolds numbers ranging from 1,000 to 13,800. Wall temperature distributions were directly measured by means of a coating of thermo-chromic liquid crystals. Local heat transfer coefficients at the inlet were higher than those predicted by most correlations, but good agreement was obtained with some literature.  相似文献   

13.

The purpose of the present study is to investigate the effect of a physical water treatment (PWT) technology on fouling mitigation in a simulated cooling tower operating at high cycles of concentration. Hard water was produced by evaporating pure water in a circulating open cooling tower, where dissolved calcium carbonate ions became concentrated with time. Heat transfer tests were conducted in a rectangular channel by varying the cycle of concentration (COC) from 5 to 10, and fouling resistances were measured over 270 hrs for each case with and without the PWT treatment. Another test was conducted with no blowdown case with and without the PWT treatment. The fouling resistance at 5 cycles with the PWT treatment was about 70% less than that in the case without the PWT treatment at the end of 270-hr tests. Even at 10 cycles, the PWT treatment reduced the fouling resistance by 60% from the value for the no treatment case. Thus, one can conclude that the PWT technology can help circulating cooling-tower water at relatively high COC for significant freshwater conservation, while keeping fouling resistances below industry standards.  相似文献   

14.
工业能耗占我国总能耗超过70%,而其能源利用效率不足50%,因此工业余热高效回收利用是节能减排的重要途径之一。热泵技术是提升能量品位的有效方法,但吸收式热泵需要配置三个不同温度品位的热源或热汇,而电动热泵受热力学循环、工质物性、压缩机耐温耐压限制以及避免润滑失效一般只能工作于有限温度范围(<100℃)之内,因此该研究将吸收式循环与压缩式循环进行深度耦合,用于直接回收工业余热制取高温热水,同时确保压缩机的安全稳定运行.该文首先分析耦合热泵换热器的运行原理,其次建立了耦合热泵换热器的数学模型,最后对模型进行求解分析了关键参数对耦合热泵换热器性能影响变化规律。在设计工况下,当制取133℃热水时,耦合热泵换热器COP达到3.6,压缩机排气压力为1.2 MPa,排气温度为79℃,远低于压缩机耐温耐压上限和润滑油失效温度,因此耦合热泵换热器在利用余热制取高温热水或蒸汽领域具有一定的应用潜力。  相似文献   

15.
随着高效预冷器在航天航空领域发挥越来越重要的作用,紧凑高效换热器的研究成为了人们关注的热点。本文基于紧凑微通道换热器的几何特征,针对矩形截面平行流道换热器内超临界压力低温流体(氢和氦)在大温差条件下的流动换热现象进行数值模拟研究。通道截面边长小于1 mm,热流体氦和冷流体氢的进出口温差均大于600 K。通道内流体换热系数在顺流和逆流条件下有不同的变化趋势,并出现峰值。换热量随着通道宽度的增大而增大,流动压降随着通道宽度的增大而减小。冷热流体逆流时换热量大,压降较小,但对换热器材料要求较高。  相似文献   

16.
随着高效预冷器在航天航空领域发挥越来越重要的作用,紧凑高效换热器的研究成为了人们关注的热点。本文基于紧凑微通道换热器的几何特征,针对矩形截面平行流道换热器内超临界压力低温流体(氢和氦)在大温差条件下的流动换热现象进行数值模拟研究。通道截面边长小于1 mm,热流体氦和冷流体氢的进出口温差均大于600 K。通道内流体换热系数在顺流和逆流条件下有不同的变化趋势,并出现峰值。换热量随着通道宽度的增大而增大,流动压降随着通道宽度的增大而减小。冷热流体逆流时换热量大,压降较小,但对换热器材料要求较高。  相似文献   

17.
对油基钻屑在螺纹推进式换热器内的流动换热过程进行了数值模拟,研究了螺杆转速、油基钻屑雷诺数Re和螺纹截面形状对流动换热的影响.结果表明:随着螺杆转速增加,传热系数、油基钻屑出口温度均增大;同时发现,当雷诺数Re<250时,壳侧Nusselt数随雷诺数Re增大而迅速增大,此后雷诺数对Nusselt数影响较小;Nussel...  相似文献   

18.
利用软件EVAP-COND,模拟对比了在室内换热器中分别采用R22与R410A制冷剂时冷凝器的性能随支路数的变化,结果表明:室内换热器作为冷凝器时,R410A的换热量比R22的要大,换热量的差别是由两排管共同造成的,两排管中R410A的换热量都比R22的要大;随支路数的增多,第一排管对冷凝器换热量差值的影响越来越显著,而第二排管的影响逐渐减弱;第一排管换热量的差别主要受传热系数的影响,而第二排管受传热温差和传热系数的综合影响。因此,支路增多时制约R410A和R22冷凝器换热量差别的因素,从传热温差和传热系数共同作用逐渐转变为传热系数起主导作用。  相似文献   

19.
An experimental investigation was conducted on automatic transmission fluid cooling in a minichannel heat exchanger using a closed-loop integrated thermal wind tunnel test facility. Effects of automatic transmission fluid Reynolds number (ReL) on heat transfer coefficient and Nusselt number were examined within the ReL of 3–30 for air-flow Re of 1,450–5,200. Effects of serpentine on heat transfer enhancement and flow characteristics were evaluated through Dean number analysis. The analysis of Eckert number and Brinkman number showed a contribution to the viscous heating even for a low ReL in the minichannel. The study showed enhanced heat transfer characterizations of the multi-port minichannel heat exchanger.  相似文献   

20.
斯特林发动机由于其外部加热特性适合用于分布式供能系统而正在得到越来越多的重视。斯特林机运转时,其内部工质的压力传递变化特性决定了输出机械功率的大小。本文首先采用施密特分析法对自主研制的某型斯特林机在预充氦气压力为2 MPa的工况下计算其压力的周期性变化情况,然后在同样的工况下用实验测试的方法研究工质在换热器系统内的压力传递变化特性。最后比较理论计算值与实验测试值得出,施密特分析法可以反映出斯特林机换热器系统内工质压力的真实变化情况,且叠网式的回热器结构是造成换热器系统内压力损失的主要因素之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号