共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Kubota Y. Kanazawa K. Nasu S. Moritake H. Kawaji T. Atake Y. Ichiyanagi 《Journal of Thermal Analysis and Calorimetry》2008,92(2):461-463
MgFe2O4 (Mg-ferrite) nanoparticles encapsulated in amorphous SiO2 were prepared by the wet chemical method. The particle sizes were estimated, based on the X-ray diffraction peaks, to be
between 3 and 8 nm, depending on the annealing temperature. The particle size increased as the annealing temperature increased.
From the magnetization measurements, the blocking temperature, T
b, was found to be between 30 and 60 K. The magnetization values varied with the annealing or quenching conditions. To clarify
the process of crystal growth, thermogravimetric and differential thermal analysis (TG-DTA) measurements were performed and
the results were compared with the X-ray diffraction patterns. 相似文献
2.
P. Holec J. Plocek D. Nižňanský J. Poltierová Vejpravová 《Journal of Sol-Gel Science and Technology》2009,51(3):301-305
This work presents the preparation and characterization of magnesium ferrite which is one of the important magnetic oxides with spinel structure. Magnesium ferrite was prepared via microemulsion method mediated hydrolytic decomposition of mixed alkoxide solutions. This microemulsion was using for preparation magnesium ferrit for the first time. The starting solution, composed from magnesium methoxide and iron ethoxide in dry ethanol, was introduced in to the prepared microemulsion and sequentially hydrolyzed by distilled water addition (Pithan et al. in J Cryst Growth 280:191–200, 2005; Shiratori et al. in J Eur Ceram Soc 25:2075–2079, 2005; Herrig and Hempelmann in Mater Lett 27:287–292, 1996). After raw powder precipitation, the samples were decantanted by ethanol and then calcined at temperatures 800, 900, 1,000 or 1,100 °C for 1 h. The resulting samples were characterized using powder X-ray diffraction, high resolution transmission electron microscopy, Mössbauer spectroscopy and magnetic measurements. X-ray diffraction and Mössbauer spectroscopy confirmed the presence of the spinel phase. The particles size was calculated from the XRD line broadening using Scherrer equation and their size was found about 31–38 nm, with only slight dependence on the heat treatment temperature. TEM revealed the particles size of about 39 nm. Magnetic measurements showed a ferrimagnetic behavior for all samples. 相似文献
3.
Camila S. Xavier R. A. Candeia M. I. B. Bernardi S. J. G. Lima E. Longo C. A. Paskocimas L. E. B. Soledade A. G. Souza Iêda M. G. Santos 《Journal of Thermal Analysis and Calorimetry》2007,87(3):709-713
Magnesium and zinc ferrites
have been prepared by the polymeric precursor method. The organic material
decomposition was studied by thermogravimetry (TG) and differential thermal
analysis (DTA). The variation of crystalline phases and particle morphology
with calcination temperature were investigated using X-ray diffraction (XRD)
and scanning electronic microscopy (SEM), respectively. The colors of the
ferrites were evaluated using colorimetry. Magnesium ferrite crystallizes
above 800°C, presenting a yellow- orange color with a reflectance peak
at the 600–650 nm range, while zinc ferrite crystallizes at 600°C,
with a reflectance peak between 650–700 nm, corresponding to the red-brick
color. 相似文献
4.
Li Li 《Journal of Sol-Gel Science and Technology》2011,58(3):677-681
Uniform spinel ferrite CoFe2O4 nanoparticles with average diameter of 40 nm were fabricated by a novel glycol-assisted autocombustion method. The as-prepared
powders were characterized by X-ray diffraction, transmission electron microscopy and Raman spectrum. The room temperature
magnetic property of the nanoparticles was examined, indicating the presence of an ordered magnetic structure in the spinel
system. The electrochemical tests show that the as-prepared nanoparticles exhibits excellent electrochemical cycleability.
The simple synthetic route can be applied to as a general method for the fabrication of other functional nanomaterials. 相似文献
5.
A. N. Kozitsina T. S. Svalova T. A. Glazyrina A. V. Ivanova A. I. Matern 《Russian Chemical Bulletin》2016,65(3):697-703
Peculiarities of electrochemical behavior of the Fe3O4 magnetic nanoparticles immobilized on the surface of a platinum electrode in aprotic organic media were investigated. Possible scheme of electrochemical behavior of nanoparticles depending on pre-electrolysis potential (–1.3,–2.5 V) was suggested. The effect of pre-electrolysis time, potential scan rate and nature of supporting electrolyte on the processes investigated was determined. A linear dependence of electrochemical oxidation signal versus the concentration of nanoparticles in modifying suspension in the concentration range of 0.05—0.5 g L–1 was observed. The results of the performed research allow using magnetite nanoparticles as a direct signal-generating label in electrochemical immunoassay. 相似文献
6.
M. N. Smirnova M. A. Kop’eva E. N. Beresnev L. V. Goeva N. P. Simonenko G. E. Nikiforova V. A. Ketsko 《Russian Journal of Inorganic Chemistry》2018,63(4):439-443
A powderlike material of composition MgFe1.6Ga0.4O4 was synthesized by gel combustion using a glycine–hexamethylenetetramine mixture. The gel produced by the synthesis was studied by thermal analysis (TGA/DSC) and IR spectroscopy. This mixture was shown to be efficient for obtaining homogeneous nanosized MgFe1.6Ga0.4O4. The morphology of the powders was characterized by scanning electron microscopy and X-ray powder diffraction analysis. 相似文献
7.
Nafise Modanlou Juibari Abbas Eslami 《Journal of Thermal Analysis and Calorimetry》2017,127(1):115-122
A new powder metallurgy technique was developed in order to increase the reinforcement proportion of aluminum with two different fractions of Al2O3. Aluminum powders were mixed with 20 % vol of alumina particles as primarily reinforcement, and additional alumina was produced in situ as a result of reaction between Al and additional 7.5 % vol of Fe2O3 powder. The three grades of powders were milled and hot-pressed into small preforms, and differential scanning analysis (DSC) was performed to determine the kinetics of microstructural transformations produced on heating. DSC curves were mathematically processed to separate the superposing effects of thermal reactions. Transformation points on resulting theoretical curves evidenced two distinct exothermal reaction peaks close to the melting point of aluminum that were correlated with formation of Fe–Al compounds and oxidation of aluminum. Microstructural investigations by means of SEM-EDX and XRD suggested that these exothermal reactions produced complete decomposition of iron (III) oxide and formation of Fe–Al compounds during sintering at 700 °C, and therefore, heating at higher temperatures would not be necessary. These results, along with calculation of activation energies, based on Kissinger’s method, could be used to optimize the fabrication of Al-Al2O3 composites by means of reactive sintering at moderate temperatures. 相似文献
8.
Nano-structured spinel Li2Mn4O9 powder was prepared via a combustion method with hydrated lithium acetate (LiAc·2H2O), manganese acetate (MnAc2·4H2O), and oxalic acid (C2H2O4·2H2O) as raw materials, followed by calcination of the precursor at 300 °C. The sample was characterized by X-ray diffraction,
scanning electron microscope, and energy-dispersive X-ray spectroscopy techniques. Electrochemical performance of the nano-Li2Mn4O9 material was studied using cyclic voltammetry, ac impedance, and galvanostatic charge/discharge methods in 2 mol L−1 LiNO3 aqueous electrolyte. The results indicated that the nano-Li2Mn4O9 material exhibited excellent electrochemical performance in terms of specific capacity, cycle life, and charge/discharge
stability, as evidenced by the charge/discharge results. For example, specific capacitance of the single Li2Mn4O9 electrode reached 407 F g−1 at the scan rates of 5 mV s−1. The capacitor, which is composed of activated carbon negative electrode and Li2Mn4O9 positive electrode, also exhibits an excellent cycling performance in potential range of 0–1.6 V and keeps over 98% of the
maximum capacitance even after 4,000 cycles. 相似文献
9.
Microwave-induced combustion with glycine, CTAB-assisted hydrothermal process with NaOH and NH3, EDTA assisted-hydrothermal
methods have been applied to prepare NiFe2O4 nanoparticles for the first time. Structural and magnetic properties of the products were investigated by X-ray powder diffraction
(XRD), scanning electron microscopy (SEM), transmison electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR),
and electron spin resonance spectrometry (EPR). TEM measurements showed that morphology of the product depends on the synthesis
method employed. The average cystallite size of NiFe2O4 nanoparticles was in the range of 14–59 nm as measured by XRD. The uncoated sample (Method A) had an EPR linewidth of 1973
Oe, the coated samples reached lower values. The magnetic dipolar interactions existing among the Ni ferrite nanoparticles
are reduced by the coatings, which could cause the decrease in the linewidth of the EPR signals. Additionally, the linewidth
increases with an increase in the size and the size distribution of nanoparticles. 相似文献
10.
Daixin Ye Yanhong Xu Liqiang Luo Yaping Ding Yulong Wang Xiaojuan Liu 《Journal of Solid State Electrochemistry》2012,16(4):1635-1642
A novel electrochemical sensor based on LaNi0.5Ti0.5O3/CoFe2O4 nanoparticle-modified electrode (LNT–CFO/GCE) for sensitive determination of paracetamol (PAR) was presented. Experimental
conditions such as the concentration of LNT–CFO, pH value, and applied potential were investigated. Under the optimum conditions,
the electrochemical performances of LNT–CFO/GCE have been researched on the oxidation of PAR. The electrochemical behaviors
of PAR on LNT–CFO/GCE were investigated by cyclic voltammetry. The results showed that LNT–CFO/GCE exhibited excellent promotion
to the oxidation of PAR. The over-potential of PAR decreased significantly on the modified electrode compared with that on
bare GCE. Furthermore, the sensor exhibits good reproducibility, stability, and selectivity in PAR determination. Linear response
was obtained in the range of 0.5 to 901 μM with a detection limit of 0.19 μM for PAR. 相似文献
11.
Ternary oxides of Li-Fe-Mn-O system with overstoichiometric spinel structure Li1+xMn1-yFeyO4, have been synthesized. The effect of composition and synthesis temperature on the electrochemical performance of the oxides as a material of positive electrodes of Li-ion batteries has been studied. The optimal temperature of synthesis was found to be 850 °C for the composition Li1.2Mn1.6Fe0.4O4. This oxide shows good reversibility at acceptable level of capacity near 105 mAh/g.Presented at the 3rd International Meeting "Advanced Batteries and Accumulators", June 16th–20th 2002, Brno, Czech Republic 相似文献
12.
Ali Maleki Abbas Ali Jafari Somayeh Yousefi 《Journal of the Iranian Chemical Society》2017,14(8):1801-1813
A new biopolymer cellulose-based magnetic heterogeneous catalyst, MgFe2O4/cellulose/SO3H nanocomposite, was prepared. Fourier-transform infrared spectra, X-ray diffraction, energy-dispersive X-ray, field-emission scanning electron microscopy, thermal analysis (TG, DTG and DSC), dynamic light scattering and vibrating sample magnetometer measurements have been used to characterize the catalyst. Then, it was applied efficiently as an inexpensive and green catalyst in two multicomponent syntheses of polysubstituted tetrahydropyridines and dihydropyrimidinones under solvent-free conditions. The nanocatalyst can be recovered and reused several times without significant loss of catalytic activity. 相似文献
13.
Irene Quinzeni Vittorio Berbenni Doretta Capsoni Marcella Bini 《Journal of Solid State Electrochemistry》2018,22(7):2013-2024
Spinel ferrites are an amazing class of materials that can find application in different fields, from sensors and lithium-ion batteries to the intriguing biomedical field. For the use as anode in lithium-ion batteries, ZnFe2O4 is rather competitive due to low price, abundance, environmental benignity, working voltage of ~1.5 V, and, most importantly, a high theoretical specific capacity (~1072 mA h g?1). For its practical application, however, some issues must be overcome, in particular its fast capacity fading and poor rate capability resulting from an inherent low electronic conductivity. Possible strategies are represented by ferrite carbon coating/embedding, peculiar synthesis routes, and doping. In this frame, we synthesized Ca- and Al-doped ZnFe2O4 nanoparticles by using microwave-assisted combustion synthesis, followed by a classical carbon coating (determined as about 5 wt% by thermogravimetry). A good solubility of Ca and Al up to 25 atom% on both Zn and Fe sites was obtained. Cyclic voltammetries evidenced redox reactions involving Zn and Fe ions, but also the Al intervention could be supposed. Galvanostatic charge–discharge cycles proved that particularly Al ions were useful to improve the anode structural stability at high C rate (up to 3C), thanks to the stronger Al–O bonds with respect to Fe–O ones. A further improvement of capacities comes from the use of sodium alginate as binder to substitute polyvinylidene fluoride in the anode preparation. 相似文献
14.
L. R. Gonsalves S. C. Mojumdar V. M. S. Verenkar 《Journal of Thermal Analysis and Calorimetry》2011,104(3):869-873
Cobalt zinc ferrite, Co0.8Zn0.2Fe2O4, nanoparticles have been synthesized via autocatalytic decomposition of the precursor, cobalt zinc ferrous fumarato hydrazinate.
The X-ray powder diffraction of the ‘as prepared’ oxide confirms the formation of single phase nanocrystalline cobalt zinc
ferrite nanoparticles. The thermal decomposition of the precursor has been studied by isothermal, thermogravimetric and differential
thermal analysis. The precursor has also been characterized by FTIR, and chemical analysis and its chemical composition has
been determined as Co0.8Zn0.2Fe2(C4H2O4)3·6N2H4. The Curie temperature of the ‘as-prepared oxide’ was determined by AC susceptibility measurements. 相似文献
15.
Saeid Ramezani Arash Ghazitabar Sayed Khatiboleslam Sadrnezhaad 《Journal of the Iranian Chemical Society》2016,13(11):2069-2076
Nickel ferrite nanoparticle is a soft magnetic material whose appealing properties as well as various technical applications have rendered it as one of the most attractive class of materials; its technical applications range from its utility as a sensor and catalyst to its utility in biomedical processes. The present paper focuses first on the synthesis of NiFe2O4 nanoparticles through co-precipitation method resulting in calcined nanoparticles that were achieved at different times and at a constant temperature (773 k). Afterward, they were dispersed in water that was mixed by chitosan. Chitosan was bonded on the surface of nanoparticles by controlling the pH of media. In order to assess the structural and magnetic properties of nanoparticles, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM) analyses were conducted at room temperature. As per the results of XRD analysis, the pure NiFe2O4 was synthesized. Additionally, nanoparticles grew in size by extending the calcination process duration. TEM micrographs were used to determine the size and shape of particle; the obtained results indicate that the particle size was in a range of 17–30 nm and of a circular shape. The proper chitosan covering was also indicated by FTIR results. The VSM analysis also revealed that the saturated magnetization of NiFe2O4 nanoparticles stood in a range of 29 emu/g and 45 Qe. A stable maximum temperature ranging from 30 to 42 was successfully achieved within 10 min. Also, a specific absorption rate of up to 8.4 W/g was achieved. The study results revealed that the SAR parameter of the coated nickel ferrite nanoparticle is more than that of pure nickel ferrite or cobalt ferrite nanoparticles. 相似文献
16.
Ionic liquid coated nanoparticles (IL-NPs) consisting of zero-valent iron are shown to display intrinsic peroxidase-like activity with enhanced potential to catalyze the oxidation of the chromogenic substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide. This results in the formation of a blue green colored product that can be detected with bare eyes and quantified by photometry at 652 nm. The IL-NPs were further doped with bismuth to enhance its catalytic properties. The Bi-doped IL-NPs were characterized by FTIR, X-ray diffraction and scanning electron microscopy. A colorimetric assay was worked out for hydrogen peroxide that is simple, sensitive and selective. Response is linear in the 30–300 μM H2O2 concentration range, and the detection limit is 0.15 μM. 相似文献
17.
A new approach to the synthesis of hybrid nanoparticles based on magnetic Fe3O4 nanoparticles and CdS quantum dots, combining magnetic and luminescence properties, has been suggested. Conditions for preparation of their stable aqueous suspensions have been found, and their optical properties have been studied. Nanocomposites produced at the molar ratio Fe3O4: CdS = 5: 1, which exhibited the luminescence properties) and gave stable aqueous suspensions, have turned out to be most promising. The results are evidence that the synthesized nanoparticles can be used for the development of visualizing agents for in vitro biomedical research. 相似文献
18.
H. R. Dehghanpour 《Russian Journal of Applied Chemistry》2016,89(5):846-849
The combustion method has been utilized to generate cobalt spinel ferrite nanoparticles. The generated nanoparticles were ball milled for different times. Physical and chemical properties of the nanoparticles were characterized by X- ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), and vibrating sample magnetometer (VSM). Crystalline structure of the nanoparticles was stable after ball milling. FTIR showed that oxygen-metal bonding was stronger after ball milling. Moreover, the ball milled nanoparticles magnetically were harder than the nanoparticle without ball milling. 相似文献
19.
As the solubility is a direct measure of stability, this study compares the solubilities of ZnFe2O4, Fe3O4 and Fe2O3 in high temperature water. Through literature analysis and formula derivation, it is shown that it is reasonable to assume ZnFe2O4 and Fe(OH)3 coexist when ZnFe2O4 is dissolved in water. Results indicated that the solubility of ZnFe2O4 is much lower than that of Fe2O3 or Fe3O4. The low solubility of ZnFe2O4 indicates that it is more protectively stable as an anticorrosion phase. Moreover, the gap between the solubility of ZnFe2O4 and that of Fe3O4 or Fe2O3 was enlarged with an increase of temperature. This means that ZnFe2O4 is more protective at higher temperatures. Further analysis indicated that with the increase of temperature, the solubility of ZnFe2O4 changed little while those of Fe2O3 or Fe3O4 changed a lot. Little change of the solubility of ZnFe2O4 with increase of temperature showed that ZnFe2O4 is stable. The very low and constant solubility of ZnFe2O4 suggests that it is more protective than Fe2O3 and Fe3O4, especially in water at higher temperature. 相似文献
20.
The paper describes a nonenzymatic amperometric H2O2 sensor that uses a nanocomposite consisting of Co3O4 nanoparticles (NPs) and mesoporous carbon nanofibers (Co3O4-MCNFs). The Co3O4 NPs were grown in situ on the MCNFs by a solvothermal procedure. The synergetic combination of the electrocatalytic activity of the Co3O4 NPs and the electrical conductivity of MCNFs as an immobilization matrix enhance the sensing ability of the hybrid nanostructure. The oxidation current, best measured at 0.2 V (vs. SCE) is linear in the 1 to 2580 μM H2O2 concentration range, with a 0.5 μM lower detection limit (at an S/N ratio of 3). The sensor is highly selective even in the presence of common electroactive interferents. It was applied to the determination of H2O2 in spiked milk samples. 相似文献