首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutron depth profiling (NDP) is a nondestructive, near-surface technique, which utilizes a thermal/cold neutron beam to determine the concentration of specific light elements versus the depth in materials. The depth distribution is obtained by measuring the energy loss spectrum of protons, alphas, or recoil atoms in the substrate materials. For conventional NDP, the depth resolution is highly dependent on the limited ability of the detectors and associated electronics. A novel technique, the time-of-flight (TOF) method that is based on a completely different energy-measurement mechanism, can greatly improve the depth resolution for the accurate measurement of the dopant depth profile in especially shallow junction devices. Such a set of TOF NDP facility is being constructed at the 1 MW Breazeale Nuclear Reactor at Penn State University, Radiation Science and Engineering Center. In the TOF-NDP, a timing start signal is obtained from electrons emitted simultaneously with a neutron-induced recoil particle leaving the surface of the sample. The same particle generates the subsequent stop signal, whereby the residual energy of the particle is much more precisely determined from the particle flight time than currently obtained by the use of surface barrier detectors. In this paper, the Penn State conventional NDP measurement results will be presented and TOF-NDP facility will be described.  相似文献   

2.
Using a low-energy neutron beam as an isotopic probe, neutron depth profiling (NDP) provides quantitative depth profiles in nearly all solid matrix materials. Several of the light elements, such as He, Li, B, and N can be nondestructively analyzed by NDP. The information obtained using NDP is difficult if not impossible to determine by non-nuclear techniques. As a result, NDP is used collaboratively with techniques such as SIMS, RBS, FTIR, PGAA, and AES. Profiles measured by NDP are given for semiconductor and optical processing materials, and light weight alloys. Improvements in the technique are discussed with emphasis on the use of intense cold neutron beams.  相似文献   

3.
Alpha spectroscopy can be used to quantify actinide (e.g., U, Pu) concentration in a molten salt electrorefining environment. One could electroplate actinide samples directly onto a semiconductor alpha particle detector to obtain representative isotopic concentrations from a measured alpha particle energy spectrum. In this work, we fabricated a SiC Schottky device that can be partially biased to a depletion depth of 8.8 µm that is able to measure the energy spectrum of 4.012 MeV alpha particles emitted from a thorium film with a thickness. We also present a method in calculating the thickness of a medium thick alpha source with a dE/dx detector.  相似文献   

4.
5.
Borophosphosilicate glass (BPSG) has been used for its improved reflow properties compared to low temperature oxide (LTO) in planar technology. Thin films of BPSG were deposited by a low-pressure chemical vapor deposition process. The boron content was determined by NDP. In addition from the NDP spectrum the depth profile of boron and the thickness of the film were also determined. In the NDP technique, samples, typically silicon wafers with 500 nm thick BPSG film, were exposed to a highly-thermalized neutron beam. Generated by the10B(n,)7 Li reaction, isotropically emitted monoenergetic particles of 1.47 MeV were counted in an evacuated in-beam analysis setup. The energy loss of the -articles in the film was proportional to the depth at which the nuclear reaction took place. The energy spectrum of the -articles, therefore, was a direct result of the boron depth profile, and the area under the curve was a measure of the total number of boron atoms in the film. This unique nuclear technique provided an excellent method for optimizing the composition of the BPSG film for device processing.  相似文献   

6.
An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L−1 and 2.4 nL L−1 for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L−1 and 30 nL L−1 for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air.  相似文献   

7.
In semiconductor particles of nanometer size, a gradual transition from solid-state to molecular structure occurs as the particle size decreases. Consequently, a splitting of the energy bands into discrete, quantized levels occurs. Particles that exhibit these quantization effects are often called “Q-particles” or, generally, quantized material. The optical, electronic and catalytic properties of Q-particles drastically differ from those of the corresponding macrocrystalline substance. The band gap, a substance-specific quantity in macrocrystalline materials, increases by several electron volts in Q-particles with decreasing particle size. In Q-particles there are approximately as many molecules on the surface as in the interior of the particle. Therefore, the nature of the surface as well as the particle size is also largely responsible for the physico-chemical properties of the particle. Q-particles of many materials can be prepared in the form of colloidal solutions or embedded in porous matrices and are stable over a long period of time. In sandwich colloids, in which Q-particles of different materials are coupled, as well as in porous semiconductor electrodes containing Q-particles in the pores, very efficient primary charge separation is observed. As a result, sandwich colloids have greatly enhanced photocatalytic activity relative to the individual particles, while electrodes modified with Q-particles show high photocurrents. This article deals with the size quantization effect, the synthesis and characterization of Q-particles, as well as with the spectroscopic, electrochemical, and electron-microscopic investigation of these particles.  相似文献   

8.
Lee CG  Suzuki D  Esaka F  Magara M  Kimura T 《Talanta》2011,85(1):644-649
The fission track technique is a sensitive detection method for particles which contain radio-nuclides like 235U or 239Pu. However, when the sample is a mixture of plutonium and uranium, discrimination between uranium particles and plutonium particles is difficult using this technique. In this study, we developed a method for detecting plutonium particles in a sample mixture of plutonium and uranium particles using alpha track and fission track techniques. The specific radioactivity (Bq/g) for alpha decay of plutonium is several orders of magnitude higher than that of uranium, indicating that the formation of the alpha track due to alpha decay of uranium can be disregarded under suitable conditions. While alpha tracks in addition to fission tracks were detected in a plutonium particle, only fission tracks were detected in a uranium particle, thereby making the alpha tracks an indicator for detecting particles containing plutonium. In addition, it was confirmed that there is a linear relationship between the numbers of alpha tracks produced by plutonium particles made of plutonium certified standard material and the ion intensities of the various plutonium isotopes measured by thermo-ionization mass spectrometry. Using this correlation, the accuracy in isotope ratios, signal intensity and measurement errors is presumable from the number of alpha tracks prior to the isotope ratio measurements by thermal ionization mass spectrometry. It is expected that this method will become an effective tool for plutonium particle analysis. The particles used in this study had sizes between 0.3 and 2.0 μm.  相似文献   

9.
Abstract— The photochemistry of phthalocyanine particles suspended in a fluid has been investigated. In alcoholic media, these particles were shown to be capable of reducing benzoquinone and oxidizing hydroquinone. In aqueous media the light induced formation of superoxide was detected. This reaction could be substantially enhanced by addition of EDTA. The role of surfactant in the photoproduction of superoxide is associated with the charge acquired by the particle as a result of the surfactant used. These results can be explained in terms of the band model for semiconductors where band bending by surfactant molecules is invoked. Such studies have relevance to photoevents occurring in photosynthesis, photocatalysis and to the types of solar energy conversion systems where a photoactive semiconductor interfaces with an aqueous medium.  相似文献   

10.
Uranium and plutonium particulate test materials are becoming increasingly important as the reliability of measurement results has to be demonstrated to regulatory bodies responsible for maintaining effective nuclear safeguards. In order to address this issue, the Institute for Reference Materials and Measurements (IRMM) in collaboration with the Institute for Transuranium Elements (ITU) has initiated a study to investigate the feasibility of preparing and characterizing a uranium particle reference material for nuclear safeguards, which is finally certified for isotopic abundances and for the uranium mass per particle. Such control particles are specifically required to evaluate responses of instruments based on mass spectrometric detection (e.g. SIMS, TIMS, LA-ICPMS) and to help ensuring the reliability and comparability of measurement results worldwide. In this paper, a methodology is described which allows quantifying the uranium mass in single micron particles by isotope dilution thermal ionization mass spectrometry (ID-TIMS). This methodology is characterized by substantial improvements recently achieved at IRMM in terms of sensitivity and measurement accuracy in the field of uranium particle analysis by TIMS. The use of monodisperse uranium oxide particles prepared using an aerosol generation technique developed at ITU, which is capable of producing particles of well-characterized size and isotopic composition was exploited. The evidence of a straightforward correlation between the particle volume and the mass of uranium was demonstrated in this study. Experimental results have shown that the uranium mass per particle can be measured via the ID-TIMS method to a relative expanded uncertainty of about 10% (coverage factor k = 2). The availability of reliable and validated methods for the characterization of uranium particles is considered to be essential for the establishment of SI-traceable measurement results. It is therefore expected that the method developed in this study is valuable for the certification of particulate materials in which the isotopic composition and the content of uranium must be accurately known.  相似文献   

11.
Computations based on the extended DLVO theory are carried out on the potential energies of interactions between air bubbles and talc particles covered by nonpolar oil. It is shown that the major role of nonpolar oil in this system is to greatly increase the depth of the primary energy valley, giving rise to a much stronger bubble-particle aggregate that can support greater aggregate-rupture force fields from turbulent flows. Also, due to nonpolar oil involvement, the energy barrier between bubbles and mineral particles sharply collapses down and further separates, indicative of a greater probability of attachment of mineral particles to air bubbles. A linear relationship is found between the primary energy valley and the contact angles of oil or bubbles, and thus a simple and approximate formula is presented to evaluate the depth of the primary energy valley. In addition, it is found that the primary energy valley and the energy barrier are directly proportional to the effective particle radius, but the barrier location is independent of the effective particle radius. Copyright 1999 Academic Press.  相似文献   

12.
In the nano-aerosol mass spectrometer, individual particles in the 10–30 nm size range are trapped and irradiated with a high pulse energy laser beam. The laser pulse generates a plasma that disintegrates the particle into atomic ions, from which the elemental composition is determined. Particle-to-particle variations among the mass spectra are shown to arise from plasma energetics: Low ionization energy species are enhanced in some spectra while high ionization energy species are enhanced in others. These variations also limit the accuracy and precision of elemental analysis, with higher deviations generally observed when low ionization energy species are dominant in the mass spectrum. For standard datasets generated from nominally identical particles, it is shown that that the error associated with composition measurement is random and that averaging the spectra from a few tens of particles is sufficient for measuring the mole fractions of common elements to within about 10 % of the expected value. Averaging a greater number of particles offers limited improvement of the measurement precision but has the deleterious effect of degrading the measurement time-resolution, which is given by the time needed to obtain the required number of particle spectra for averaging. An internally mixed ambient particle dataset was found to give a similar result to the standard datasets, that is, the measured elemental composition converged to the average value after a few tens of particles were averaged.  相似文献   

13.
Measuring the distribution of lithium in high capacity lithium-ion battery (LIB) electrodes is essential to understanding the coulombic losses during the lithiation/delithiation processes that occur while charging and discharging the cell. In this research, two half-cell prototypes were fabricated by electrochemically lithiating Sn foil anodes in 1M LiBF4 in a 1:1 (wt:wt) ethylene carbonate and dimethyl carbonate solutions at a constant potential of 0.50 and 0.67 V (vs. Li/Li+). The neutron depth profiling (NDP) technique was employed to study the Li distributions in the anodes. Li concentration profiles were resolved for the samples lithiated under different conditions for LIB studies. In addition, this paper demonstrated an in situ NDP measurement of an electrochemical cell with a thin window design, which reveals the dynamics of lithium distribution within the Sn anode.  相似文献   

14.
崔晓莉 《化学通报》2017,80(12):1160-1170
平带电位(E_(fb))是半导体/电解质溶液体系的重要概念,是半导体电极在平带状态时的电极电位,它是半导体电极特有的可以实验测定的物理量。利用Mott-Schottky曲线以及光电化学等方法可以测定平带电位,判断半导体的类型以及估算半导体的载流子浓度,其数值可用于推测半导体的能级结构,确定半导体材料的价带或导带能级位置。这对于与太阳能开发利用相关的半导体光催化和光电化学研究都是非常重要的。本文分析了半导体电极的能带弯曲及影响因素,首次提出半导体界面层内费米能级弯曲,阐明半导体电极平带电位的物理意义及其测定方法,以帮助初学者理解和应用平带电位。  相似文献   

15.
The intensity of individual gold nanoparticles with nominal diameters of 80, 100, 150, and 200 nm was measured using single-particle inductively coupled plasma-mass spectrometry (ICP-MS). Since the particles are not perfectly monodisperse, a distribution of ICP-MS intensity was obtained for each nominal diameter. The distribution of particle mass was determined from the transmission electron microscopy (TEM) image of the particles. The distribution of ICP-MS intensity and the distribution of particle mass for each nominal diameter were correlated to give a calibration curve. The calibration curves are linear, but the slope decreases as the nominal diameter increases. The reduced slope is probably due to a smaller degree of vaporization of the large particles.In addition to the degree of particle vaporization, the rate of analyte diffusion in the ICP is an important factor that determines the measured ICP-MS intensity. Simulated ICP-MS intensity versus particle size was calculated using a simple computer program that accounts for the vaporization rate of the gold nanoparticles and the diffusion rate and degree of ionization of the gold atoms. The curvature of the simulated calibration curves changes with sampling depth because the effects of particle vaporization and analyte diffusion on the ICP-MS intensity are dependent on the residence time of the particle in the ICP. Calibration curves of four hypothetical particles representing the four combinations of high and low boiling points (2000 and 4000 K) and high and low analyte diffusion rates (atomic masses of 10 and 200 Da) were calculated to further illustrate the relative effects of particle vaporization and analyte diffusion. The simulated calibration curves show that the sensitivity of single-particle ICP-MS is smaller than that of the ICP-MS measurement of continuous flow of standard solutions by a factor of 2 or more. Calibration using continuous flow of standard solution is semi-quantitative at best.An empirical equation is formulated for the estimation of the position of complete vaporization of a particle in the ICP. The equation takes into account the particle properties (diameter, density, boiling point, and molecular weight of the constituents of the particle) and the ICP operating parameters (ICP forward power and central channel gas flow rate). The proportional constant and exponents of the variables in the equation were solved using literature values of ICP operating conditions for single-particle inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) measurements of 6 kinds of particles in 12 studies. The calculated position is a useful guide for the selection of sampling depth or observation height for ICP-MS and ICP-AES measurements of single particles as well as discrete particles in a flow, such as laser-ablated materials and airborne particulates.  相似文献   

16.
The energy distribution of the alpha particles emitted from a source is in general complex. Only under particular circumstances, as in the case of very thin sources measured at large distances from the detector, can the energy distribution be approximated theoretically. In this work, we used the well-known code SRIM to simulate the interaction of alpha particles within a thin radioactive source and within the entrance window of a typical Si semiconductor detector. We considered several thin alpha particle sources measured at a large source-to-detector distance (small solid angle), in order to compare the distributions obtained by simulation with those determined by the theoretical model applied to this case. The study was performed for a variety of realistic alpha particle sources: UF4, UO2, U3O8, Gd2O3, and BaSO4, considering as alpha emitters 235U, 233U, 148Gd and 226Ra. For all these cases, we obtained the distributions due to the source and due to the entrance window of the detector, and also the final distribution given by the convolution of these two distributions. All the energy distributions obtained by simulation showed, in general, good agreement with the predictions given by the theoretical model, which includes corrections for Bohr straggling.  相似文献   

17.
本文在AOT/异辛烷反胶束中合成了CdS和ZnS半导体纳米粒子。粒子的荧光量子产率随胶束水含量的增大而减小。这可以归结为水含量增大导致胶粒表面Cd2+或Zn2+离子浓度降低,因为这两种离子在胶粒表面富集有利于形成硫空位,从而增大光生电子-空穴对的发光复合。研究发现,Ag+离子可以有效猝灭CdS和ZnS纳米粒子的荧光发射,该猝灭过程可以用Ag+离子在胶束中的Poisson分布来描述。以溶解在有机相中的pyrene作电子给体,在光激发下可以向CdS粒子注入电子,而和ZnS粒子间没有电荷转移发生,这可以解释为两种半导体的导带边相对于pyrene激发态氧化电位所处的位置不同。Cu2+或Ag+离子在ZnS颗粒表面吸附,可以形成CuxZn1-xS或Ag2xZn1-xS复合粒子,降低ZnS粒子的导带位置,从而使之能够接受来自pyrene激发态的电子。实验结果证实了这种论点。  相似文献   

18.
This paper describes first the application of neutron depth profiling (NDP) for measuring the distribution of6Li in LiAlO2 ceramics. Using a surface barrier detector for detecting3H produced in6Li(n, )3H,6Li was profiled to a depth of 14 m in the ceramics. Secondly, a new methodology is presented for NDP with enhanced capabilities based on measuring the energy of recoiling nuclei from (n, p) and (n, ) reactions by time-of-flight mass spectrometry. The scope of recoil nucleus time-of-flight mass spectrometry (RN-TOF-MS) includes profiling of10B,14N,17O,33S,35Cl,40K. Probe depths may be of a few tens nanometers. RN-TOF-MS complements and refines NDP based on charged particle (p or ) spectrometry.  相似文献   

19.
The neutron depth profiling (NDP) technique has become an increasingly important method to nondestructively measure the absolute concentration versus depth of various elements in substrates. A permanent NDP facility is operational at a tangential beam port of the 1-MW TRIGA Mark II research reactor at The University of Texas at Austin (UT). This facility was developed to perform materials research, specifically measurements of interest to the microelectronics industry. Applications of the UT-NDP facility include measurements of boron-10 profiles in borophosphosilicate glass samples and helium-3 depth profiles of implanted helium-3 in metals, alloys and amorphous materials. A study is underway to determine radiation damage and microstructural changes in stainless steel samples by helium irradiation using NDP and Transmission Electron Microscopy. Another study, currently planned, is to measure surface wear by measuring the depth profiles of implanted beryllium-7 and sodium-22 in various materials.  相似文献   

20.
Sedimentation field-flow fractionation (SdFFF) can be used to prepare fractions of very narrow mass range for electron microscopic (EM) analysis. Assuming the particle density is the same for all particles within that fraction the equivalent spherical diameter for the particles can be calculated from SdFFF theory. Integration of the micrograph image of each particle yields an area measurement which, when used in conjunction with the equivalent spherical particle diameter (from SdFFF), provides information about the particle thickness and aspect ratio. Thus SdFFF-SEM can be used to provide detailed information about clay morphology across the particle size distribution of the sample. Three clay minerals have been studied using the methodologies outlined in this paper. The aspect ratio for the Purvis School Mine kaolinite ranged from 2.8–5.9, for RM30 illite from 11.3–24.3, and for Muloorina illite from 3.1–4.3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号