首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We investigate natural convection in a fluid saturated rotating anisotropic porous layer subjected to centrifugal gravitational and Coriolis body forces. The Darcy model (including the centrifugal, gravitational and Coriolis terms; and permeability anisotropy effects) and a modified energy equation (including the effects of thermal anisotropy) is used in the current analysis. The linear stability theory is used to evaluate the critical Rayleigh number for the onset of convection in the presence of thermal and mechanical anisotropy. It is shown that the preferred solution comprises roll cells aligned parallel to the vertical z-axis. As a result, it is found that the Coriolis acceleration (or Taylor number) and the gravitational term play no role in the stability of convection.  相似文献   

2.
We consider the effects of rotation in a porous layer heated from below and subjected to a variable gravity field. The study is presented for large Vadasz numbers where no oscillatory convection is possible. It is demonstrated that the Coriolis acceleration stabilizes the convection in a variable gravity field, whilst the effect of gravity parameter stabilses the convection when reduced and destabilizes the convection when increased.  相似文献   

3.
Flow instability due to oscillatory modes of disturbances in a horizontal dendrite layer during alloy solidification is investigated under an external constraint of rotation. The flow in the dendrite layer, which is modeled as flow in a porous layer and with the inertial effects included, is assumed to rotate about the vertical axis at a constant angular velocity. The investigation is an extension of the work in Riahi (On stationary and oscillatory modes of flow instablity in a rotating porous layer during alloy solidification. J. Porous Media, 6, 177–187, 2003), which was for the case in the absence of the inertial effects. Results of the stability analyses indicate, in particular, that the Coriolis effect can enhance the physical domain for the oscillatory flow, while the inertial effect tends to reduce such domain. Sufficiently strong inertial effect can eliminate presence of the oscillatory mode only for the rotation rate beyond some value. The effect of interaction between the local volume fraction of solid and the flow associated with the Coriolis term was found to be stabilizing.  相似文献   

4.
A physical system may be in thermodynamic equilibrium when participating as a whole in uniform rotational motion [1]. In particular, mechanical equilibrium of a liquid in a cavity rotating about a stationary axis with the constant angular velocity (solid-body rotation of the liquid) is possible. If the liquid is uniform in composition and isothermal, then such equilibrium, as shown in [2], is stable for all . However, in the case of a nonuniformly heated liquid, stability of the solid-state rotation is, generally speaking, impossible.The appearance of two steady-state force fields is associated with uniform rotation: the centrifugal field and the Coriolis force field. The former field forces the liquid elements which are less heated and therefore more dense to move away from the axis of rotation, displacing the less dense liquid layers (centrifugation). If we maintain in the liquid a temperature gradient which prevents the establishment of equilibrium stratification of the liquid, then with a suitable value of this gradient (the magnitude obviously depending on ) undamped flows—convection—will develop in the liquid. Thus, while in conventional gravitational convection the gravity field is the reason for the appearance of the Archimedes buoyant forces, in the rotating cavity the mixing of the nonuniformly heated liquid is caused by the centrifugal field. As soon as the convective flows arise the Coriolis forces come into play. Account for the latter, as is shown below, prevents reducing in a trivial fashion the study of convective stability of rotating liquid to the well-studied problems of gravitational convection.  相似文献   

5.
The linear stability theory is used to investigate analytically the Coriolis effect on centrifugally driven convection in a rotating porous layer. The problem corresponding to a layer placed far away from the axis of rotation was identified as a distinct case and therefore justifying special attention. The stability of the basic centrifugally driven convection is analysed. The marginal stability criterion is established as a characteristic centrifugal Rayleigh number in terms of the wavenumber and the Taylor number.  相似文献   

6.
The linear stability theory is used to investigate analytically the effects of Coriolis acceleration on gravity driven convection in a rotating porous layer. The stability of a basic solution is analysed with respect to the onset of stationary convection. It was discovered that increasing the Taylor number caused degeneracy to polyhedric cells for a specific range of inclination angles. The effects of the magnitude of the horizontal wavenumber is discussed in relation to the magnitude of the Taylor number.  相似文献   

7.
The convective instability of a horizontal liquid layer confined in an annular Hele–Shaw cell subject to a constant rotation and submitted to a centrifugal gradient of temperature is investigated. Using a linear stability analysis, we study the effects of both Coriolis forces and curvature aspect on the stationary convective threshold when the Prandtl number is of the order of unity or larger than unity. We show that the Coriolis forces have a stabilizing effect, and the wave number is independent of these forces. However, a multicellular regime in the radial direction is observed for small Ekman numbers. The results related to the influence of the curvature are also shown. To cite this article: S. Ramezani et al., C. R. Mecanique 330 (2002) 633–640.  相似文献   

8.
The axisymmetric spreading of a thin liquid drop under the influence of gravity and rotation is investigated. The effects of the Coriolis force and surface tension are ignored. The Lie group method is used to analyse the non-linear diffusion-convection equation modelling the spreading of the liquid drop under gravity and rotation. A stationary group invariant solution is obtained. The case when rotation is small is considered next. A straightforward perturbation approach is used to determine the effects of the small rotation on the solution given for spreading under gravity only. Over a short period of time no real difference is observed between the approximate solution and the solution for spreading under gravity only. After a long period of time, the approximate solution tends toward a dewetting solution. We find that the approximate solution is valid only in the interval t∈[0,t∗), where t∗ is the time when dewetting takes place. An approximation to t∗ is obtained.  相似文献   

9.
In the centrifugal horizontal casting of steel pipes, the normally used rotational speed results in an acceleration of 100 times gravity within the liquid metal layer. Due to such centrifugal forces liquid metal seems to have a body rotation. However metallurgical analysis of pipes show spatial variations in solidification structure which can only originate from recirculating flows. The present study is concerned with the analysis of such stirring motions. Both theoretical and experimental approaches are presented.
Résumé Dans le procédé d'élaboration par coulée centrifuge horizontale de tubes d'acier, la vitesse de rotation utilisée conduit à une accélération de 100 g dans le métal liquide. A cause des forces centrifuges qui en résultent, le métal semble animé d'une rotation en bloc. Cependant, des analyses métallurgiques effectuées sur des tubes ainsi élaborés montrent des variations spatiales de la structure de solidification dont l'origine est la présence d'écoulements de recirculation. La présente étude concerne l'analyse de ces écoulements. Les résultats de ces deux approaches, théorique et expérimentale, sont présentés.
  相似文献   

10.
利用数值计算方法研究了旋转矩形截面螺旋管内的粘性流动,分析了在离心力,科氏力共同作用下曲线管道中的二次流动结构、轴向流速分布、截面温度分布、摩擦系数比以及管道Nusselt数比随各参数的变化情况。计算结果表明:当旋转方向和主流方向相同时,旋转的作用与增大Dean数的作用相同,使得管道摩擦系数变大,管道换热效果增强,而当旋转方向和主流方向相反时,管道内流动结构变化十分明显,当F≈-1.2时(F为科氏力与离心力之比),二次流出现类似于直扭管内的鞍状流动结构,轴向速度类似于静止直管内的流动结构,管道内的摩擦系数与静止直管内的摩擦系数大约相等,换热效果减至最弱;挠率对流动结构以及摩擦系数比和Nusselt系数比的影响效果与F有关。  相似文献   

11.
The use of rotation to simulate increased gravity in scale models of horizontal liquid-gas flows is examined. The influences of Coriolis forces and natural gravity in the model are seen to be small provided that high rotation rates are used, and large length scale-down factors can then be achieved. The modelling of compressibility and gas-viscosity effects, however, is not normally possible and these must therefore be small in the original flow.  相似文献   

12.
The inverse dynamics problem for articulated structural systems such as robotic manipulators is the problem of the determination of the joint actuator forces and motor torques such that the system components follow specified motion trajectories. In many of the previous investigations, the open loop control law was established using an inverse dynamics procedure in which the centrifugal and Coriolis inertia forces are linearized such that these forces in the flexible model are the same as those in the rigid body model. In some other investigations, the effect of the nonlinear centrifugal and Coriolis forces is neglected in the analysis and control system design of articulated structural systems. It is the objective of this investigation to study the effect of the linearization of the centrifugal and Coriolis forces on the nonlinear dynamics of constrained flexible mechanical systems. The virtual work of the inertia forces is used to define the complete nonlinear centrifugal and Coriolis force model. This nonlinear model that depends on the rate of the finite rotation and the elastic deformation of the deformable bodies is used to obtain the solution of the inverse dynamics problem, thus defining the joint torques that produce the desired motion trajectories. The effect of the linearization of the mass matrix as well as the centrifugal and Coriolis forces on the obtained feedforward control law is examined numerically. The results presented in this investigation are obtained using a slider crank mechanism with a flexible connecting rod.  相似文献   

13.
The fluid flowing in a rotating curved duct is subjected to both the Coriolis force due to a rotation and the centrifugal force due to a curvature. In this paper, the combined effects of the two forces on the flows in rotating curved rectangular ducts are examined numerically. According to the aspect ratio of the cross-section, the rectangular ducts are divided into three types: η>1, η=1, η<1, where η is the aspect ratio. The variations of the flow structures with the force ratio F (the ratio of the Corislis force to the centrifugal force) are studied in detail and many hitherto unknown flow patterns are found. The effects of the force ratio and the aspect ratio of the cross-section on the friction factor are also examined. Present results show both the characteristics of the secondary flow, axial flow and the natures of the friction factor.  相似文献   

14.
In this paper the restricted three-body problem is generalized in the sense that the effects of oblateness of the three participating bodies as well as the small perturbations in the Coriolis and centrifugal forces are considered. The existence of equilibrium points, their linear stability and the periodic orbits around these points are studied under these effects. It is found that the positions of the collinear points and y-coordinate of the triangular points are not affected by the small perturbations in the Coriolis force. While x-coordinate of the triangular points is neither affected by the small perturbations in the Coriolis force nor the oblateness of the third body. Furthermore, the critical mass value and the elements of periodic orbits around the equilibrium points such as the semi-major and the semi-minor axes, the angular frequencies and corresponding periods may change by all the parameters of oblateness as well as the small perturbations in the Coriolis and centrifugal forces. This model could be applicable to send satellite or place telescope in stable regions in space.  相似文献   

15.
A quasi-analytical finite element procedure is developed which can obtain the frequency and buckling eigenvalues of prestressed rotating anisotropic shells of revolution. In addition to the usual centrifugal forces, the rotation effects treated also include the contribution of Coriolis forces. Furthermore, since a nonlinear version of Novoshilov's shell theory is employed to develop the element formulation, the effects of moderately large prestress deflection states can be handled. Due to the generality of solution procedure developed, the axisymmetric prestress states treated can also consist of torque loads. In order to illustrate the procedures capabilities, as well as the significant effects of Coriolis forces, torque prestress and material anisotropy, several numerical experiments are presented.  相似文献   

16.
Three-dimensional spatially developing Navier–Stokes calculations are carried out to simulate the flow in a curved, rotating channel. The competition between centrifugal and Coriolis forces, expressed by the ratio of the Dean number to the rotation number, gives rise to a variety of possible instability modes characterized by the presence of streamwise vortices. Cases in which the force produced by system rotation enhances or opposes the centrifugal force are treated and the effect on the ensuing instability are analysed. Evidence for a generalized Eckhaus instability of rotating Dean vortices is presented.  相似文献   

17.
The dynamics of a rigid body with flexible attachments is studied. A general framework for problems of this type is established in the context of Poisson manifolds and reduction. A simple model for a rigid body with an attached linear extensible shear beam is worked out for illustration. Second, the Energy-Casimir method for proving nonlinear stability is recalled and specific stability criteria for our model example are worked out. The Poisson structure and stability results take into account vibrations of the string, rotations of the rigid body, their coupling at the point of attachment, and centrifugal and Coriolis forces.  相似文献   

18.
The rotation effect on the characteristics of waves propagating in a piezoelectric plate is studied in the framework of linear piezoelectricity including Coriolis and centrifugal forces. The rotation sensitivity of the wave dispersion relations is analyzed in details for polarized ceramic plates and for the lowest thickness-shear and the lowest thickness-twist waves because of the particular importance of these modes for gyroscope applications. The analysis shows that the frequency shifts monotonically with the increasing rotation rate and the rotation sensitivity of long waves is substantially greater than that of short waves. Generally, plates with shorted electrode surfaces have higher rotation sensitivity than plates with free-charge surfaces. For long waves and for small rotation rate relative to the wave frequency, the frequency shifts with rotation rate, linearly for plates with shorted electrode surfaces and nonlinearly with a nearly flat initial tangent for plates with free-charge surfaces. These rotation sensitivity characteristics are of interest for the development of rotation sensors and other piezoelectric devices for which frequency insensitivity to rotation is desired.  相似文献   

19.
The possibility of shock formation as degeneration of acceleration waves in a thermoviscous gravitational ideal gas is studied by exploiting the hyperbolic system of Extended Thermodynamics. The mathematical aspects of this problem are discussed by considering the different contributions of gravity and dissipative effects. In particular, we evaluate the critical time (i.e. the instant in which a shock wave starts) proving that it exists, in the usual physical situations, only for a sufficiently large critical initial amplitude of the acceleration jump. We show that an acceleration wave can never degenerate into a shock wave except in some limiting cases and so, since gravity force is overcome by dissipative effects, our results do not differ, qualitatively, from the case without gravity: this result implies the asymptotic stability (in the sense of [1]) of the static isothermal solutions.  相似文献   

20.
The stability and onset of convection in a rotating fluid saturated porous layer subject to a centrifugal body force and placed at an offset distance from the center of rotation is investigated analytically. The marginal stability criterion is established in terms of a critical centrifugal Rayleigh number and a critical wave number for different values of the parameter representing the dimensionless offset distance from the center of rotation. At the limit of an infinite distance from the center of rotation the results are identical to the convection resulting from heating a porous layer from below subject to the gravitational body force. At the other limit, when the parameter controlling the offset distance approaches zero, the results converge to previously found solutions for the convection in a porous layer adjacent to the axis of rotation. The results provide the stability map for all positive values of the parameter controlling the offset distance from the center of rotation, hence bridging the gap between the two extreme limit cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号