首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Using the same torch and nebulizer, a 50 and a 100 MHz inductively coupled plasma (ICP) with argon as working gas were rationally optimized to achieve maximum detection power. The detection limits (actually source SBRs) of 55 elements were measured in both ICPs under the respective compromise conditions using 84 spectral lines, comprising 30 atomic and 54 ionic lines. These detection limits did not differ essentially and therefore it appeared likely that the excitation conditions did not differ substantially either. It was considered whether this feature was reflected in the changes of the ratios of the intensities of ionic to atomic lines derived from the same set of measurements. A rational interpretation of the results in terms of Saha-Boltzmann relationships led to the conclusion that the changes in the ionic to atomic line intensity ratios could reflect closely similar excitation conditions only if a rigorous LTE coupling between the (electron) temperature (T) and the electron concentration (ne) was precluded, in other words, the results pointed to the likelihood of a model in which T and ne vary independently, ne in fact being assumed constant within the range of conditions under consideration (T = 6300 ± 300 K). On the whole, the conclusions should be treated with caution, since no Abel inversion has been applied. However, the approach as such may be of interest as a basis for more rigorous experiments.  相似文献   

2.
False-color spatial maps of experimentally determined and simulated values of electron number density (ne), electron temperature (Te) and heavy-particle temperature (Tg) for an argon inductively coupled plasma (ICP) in the plasma decay region (tail flame) are compared in detail. Experimental and theoretical values are in general very consistent; the difference between experiment and computation is approximately 10% for ne and Te and 20% for Tg in the plasma region examined. The errors in ne and Te are larger at the edge of the plasma, most likely because air entrainment becomes significant. This comparison provides a link between measurements and the current mathematical model and serves to partially validate both methods. Sources of error in both experiment and theory are considered and discussed.  相似文献   

3.
The technical feasibility of using an induction-coupled plasma (ICP) torch to synthesize ozone at atmospheric pressure is explored. Ozone concentrations up to ~250 ppm were achieved using a thermal plasma reactor system based on an ICP torch operating at 2.5 MHz and ~11 kVA with an argon/oxygen mixture as the plasma-forming gas. The corresponding production rate and yield were ~20 g ozone/hr and ~2g ozone/kWh, respectively. A gaseous oxygen quench formed ozone by rapid mixing of molecular oxygen with atomic oxygen produced by the torch. The ozone concentration in the reaction chamber was measured by Fourier Transform infrared (FTIR) spectroscopy over a wide range of experimental conditions and configurations. The geometry of the quench gas flow, the quench flow velocity, and the quench flow rate played important roles in determining the ozone concentration. The ozone concentration was sensitive to the torch RF power, but was insensitive to the torch gas flow rates. These observations are interpreted within the framework of a simple model of ozone synthesis.  相似文献   

4.
This article is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta Part B (SAB). The hardcopy text is accompanied by three disks with data files with the hardcopy paper in Word 5.0 and ASCII format, and a disclaimer. The text details the purpose of the work and the structure of the three-dimensional Ar ionization temperature and electron number density data files. The line-to-continuum method was used to evaluate the spatial distribution of Ar ionization temperatures, Tion, and electron number densities, ne, within a dry Ar inductively coupled plasma (ICP). The emission measurements were spatially resolved in three dimensions by reconstruction algorithms for computed tomography. The 40.68 MHz Ar ICP was operated at applied r.f. power levels of 0.75 and 1.0 kW. The reconstructed distributions of Ar I line emission (430.0 nm) and continuum emission (428.6 nm) show good reproducibility over a series of five replicate runs. Argon ionization temperatures remain within a 6500–8500 K range throughout the continuum-emission cone of the plasma. Deviations from this temperature range occur in the central channel and around the outer edge of the plasma. Low in the plasma, the central-channel Tion is cooler than 6000 K. Along the outer edge of the plasma, the line-to-continuum ratio becomes small; this low ratio results in erroneously high temperatures (> 12000 K). The errors in Tion appear to be due to reproducible artifacts in the reconstruction process that lead to low Ar I line-emission readings along the outer edge of the plasma. Electron densities show a maximum of 8.5 × 1014 cm−3 and 1.2 × 1015 cm−3 at 0.75 and 1.0 kW, respectively. Electron number densities were much better behaved than Tion due to their dependence on the square-root of continuum measurements and only the fourth-root of Tion.  相似文献   

5.
The synthesis, characterization, and gas permeability of 10 new polyphosphazenes has been studied. Additionally, the first gas permeation data has been collected on hydrolytically unstable poly[bis-(chloro)phosphazene]. Gases used in this study include CO2, CH4, O2, N2, H2, and Ar. CO2 was the most permeable gas through any of the phosphazenes and a direct correlation between the Tg of the polymer and CO2 transport was noted with permeability increasing with decreasing polymer Tg. To a lesser degree, permeability of all the other gases studied also yielded increases with decreasing polymer Tg. The trend observed for these new polymers was further supported by published data for other phosphazenes. Furthermore, permeability data for all gases were found to correlate to the gas condensability and the gas critical pressures, except for hydrogen, suggesting that the nature of the gas is also a significant factor for permeation through rubbery phosphazene membranes. Ideal separation factors () for the CO2/H2 and CO2/CH4 gas pairs were calculated. For CO2/CH4, no increase in was observed with decreasing Tg, however increases in were noted for the CO2/H2 pair.  相似文献   

6.
A method was presented for the determination by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) of Impurity Cerium in Potassium Lithium Niobate (K3Li2Nb5O15) Crystal. A standard model Perkin-Elmer/SCIEX ELAN 5000 ICP Mass Spectrometer was used. The instrument was operated at a RF power setting of 1.05 kW. A standard demountable quartz torch with 1.2mm id alumina injector tube was used with the following argon gas flow rates:nebulizer 0.84L/min,auxiliary 0.80L/min,and coolant 15.0L/min.  相似文献   

7.
Composition, monatomic spectral line intensities (Cu, O, N) and enthalpy are calculated for thermal and non-thermal equilibrium conditions in a plasma composed of three plasma gas mixtures of N2, O2 and an aerosol of copper sulfate in water. With these mixtures, the excitation and rotational temperatures are measured in an inductively coupled plasma (ICP) torch using monatomic Cu spectral lines and CuO molecular spectra, respectively. It is shown that with the enthalpy it is possible to deduce the electronic translation temperature for other mixtures and that this ICP torch allows us to check the diatomic simulated spectra.  相似文献   

8.
Aqueous media are used almost universally for sample introduction in both inductively coupled plasma atomic emission spectrometry (ICPAES) and in inductively coupled plasma/mass spectrometry (ICP/MS). In the process of aqueous sample introduction a substantial mass of water is introduced into the plasma as a combined aerosol/vapor mixture. In the present studies, the masses of water present as aerosol and vapor were controlled, in order to examine their separate influence on the key plasma properties of electron density ne and ionization temperature Tion. Water loading in the plasma was indeed found to have a major influence on ne and Tion, and plots of these parameters as a function of water loading are presented. Plasma viewing height and operating power were also found to be important variables in influencing the way in which water interacts with the plasma. The implications of water loading on background emission and noise level are also considered.  相似文献   

9.
This article is an electronic publication in Spectrochimica Acta Electronica (SAE), a section of Spectrochimica Acta Part B (SAB). The hardcopy text is accompanied by an electronic archive, stored on the SAE homepage at http://www.elsevier.nl/locate/sabe. The archive contains data files and text files. The present article is the fourth part of a series of papers discussing the spectral interferences of rare earth elements (REEs) in inductively coupled plasma atomic emission spectrometry (ICP-AES). The spectral interferences for 200-pm wide windows centred (±100 pm) around the prominent lines of the analytes, due to matrix lines and oxide radicals (LuO or YO) that emit band spectra depending on the excitation temperature (Texc.) in ICP were investigated. The main result is that for Texc.=7200 K, LuO and YO band components can be eliminated so that prominent analysis lines of La, Ce, Pr, Nd, Eu and Sm were observed on a smooth background. Texc..=7200 K was chosen as the optimal excitation temperature in the determination of traces of REEs in Lu2O3 and Y2O3, respectively. The quantification of the interferences in terms of Q-value was used in accordance with Boumans and Vrakking [Spectrochimica Acta Part B 42 (1987) 819; 43 (1188) 69]. The “best” analysis lines are free of line interferences and negligibly influenced by wing interferences and Lu2O3 and Y2O3 as matrices do not raise the real detection limits.  相似文献   

10.
The proton spin–lattice relaxation time (T1) dispersion was studied under simultaneous sonication in the nematic phase of 5CB. It appears that metastable ordered states subject to a memory effect can be induced by the combined action of an amplitude-modulated ultrasonication and a pulsed magnetic field. We argue that the acoustic amplitude modulation adds instability to the nematic phase through director order fluctuation enhancement. Different manipulated states of the director were unambiguously identified by the Larmor frequency dispersion of T1. The field-cycling NMR technique was used for T1 measurements.  相似文献   

11.
The torch wall is cooled largely by air passing through a cooling jacket added to the outside of a Fassel torch. The plasma is viewed axially through a cooled cone interface centered on the axial channel. The outer argon gas flow can be reduced to 7 l min−1 with no compromise in performance or torch lifetime. The plasma exhibits the same ‘robustness index’ and interference effects from Na as the conventional, high-flow ICP supplied with the particular spectrometer used. Detection limits (DL) for lines at ∼200 nm are poorer by approximately a factor of two, while those for lines at ∼400 nm are actually better than values typically seen for the same lines by axial viewing of a conventional, high-flow ICP.  相似文献   

12.
本文采用国产WPG-100型一米光栅摄谱仪、GP3.5-D1型高频等离子体发生器、气动雾化器,以不去溶方式进样直接测定纯度为99.995%的氧化钇中十四个稀土杂质元素。其中除镨(17μg/g)和钸(7μg/g)外,测定下限均为0.3-3μg/g(以氧化物计)。当被测元素的含量为3-17μg/g时,相对标准偏差为2.3-7.3%(钸和镨除外)。样品用盐酸溶解,酸度和共存元素的影响很小,方法简便、快速。  相似文献   

13.
The torch and nebulizer of an existing argon ICP system were modified and the system was (re-) optimized for aqueous and organic liquids. The paper describes the design considerations and construction of(1) a new, streamlined torch including a torch base used in this study, where a demountable rather than a prealigned version of the torch was preferred;(2) a cross-flow pneumatic nebulizer with adjustable teflon capillaries including a spray chamber with flow spoiler, concentric aerosol pick-up tube, and “U” tube with unequal legs to smooth the flow of wasted liquid to the drain.The (re)-optimization of the ICP system for analysis of aqueous solutions with inorganic matter or with both inorganic and organic matter is discussed in the light of earlier work in this laboratory regarding the selection of “compromise conditions” and the choice of representative spectral lines and measurement criteria for establishing such compromise conditions. In this context the authors consider the concepts of norm temperature and “hard” and “soft” lines, as well as recent results of measurements of spatial distributions in ICPs. The authors further describe experiments aimed at the optimization of the operating conditions of an “organic ICP” using methyl isobutyl ketone (MIBK) as organic solvent. Trends of net line and background signals and signal-to-background ratios with the ICP parameters (power; outer, intermediate and carrier gas flow; observation height; liquid feed rate) are reported, and a rational choice of compromise conditions for the ICP is argued.Performance characteristics of the modified ICP system, such as detection limits, precision and interference level, achieved under compromise conditions, have been communicated in a previous report [Spectrochim. Acta36B, 1031 (1981)] to demonstrate the capabilities of the system for analysis of aqueous solutions. Detection limits in MIBK and oil diluted in MIBK are reported in the present work as an illustration of the performance of the system when used for organic liquid analysis.  相似文献   

14.
The quasi-isothermal curing of a diepoxide resin with a triamine of polyoxypropylene was studied by alternating differential scanning calorimetry (ADSC), which is a temperature modulated DSC technique. The complex heat capacity measurements allows to analyse the vitrification process at curing temperatures (Tc) below the maximum glass transition of the fully cured epoxy (Tg=85.8°C). Initially, the modulus of the complex heat capacity, |C*p|, increases until a maximum (conversion between 0.42 and 0.56) and then decreases. This step is followed by an abrupt decay of |C*p|, due to the vitrification of the system, which allows the determination of the vitrification time. This value agrees well with that determined by the partial curing method. The phase angle and out-of-phase heat capacity show an asymmetric wide peak during the vitrification process. The change in |C*p| at vitrification decreases with the increase of Tc becoming zero at temperature Tg. This epoxy-triamine system shows a delay of the vitrification process respect to other model epoxy systems probably due to the presence of polyoxypropylene chains in the network.

The decay of |C*p| during vitrification may be normalised between unity and zero by defining a mobility factor. This mobility factor has been used to simulate the reaction rate during the stage where the reaction is controlled by diffusion. The observed reaction rate is simulated by the product of the kinetic reaction rate, determined by the autocatalytic model, and the mobility factor.  相似文献   


15.
Hydrogen and fluorine addition reactions with C28(Td) have been investigated by the density function theory method at B3LYP/6-31G level. The interaction potential between C28(Td) and atom X (X=H and F) shows that there are three possible stable isomers of C28(Td)X (X=H and F) and the average binding energy calculations suggest that C28(Td)H4 is the most stable hydrogen adduct among C28(Td)Hn (n=1–28). Furthermore, by comparisons of the energy between C28(Td)H and C28(Cs)H we found that the former are more stable than the later, and the structural and energy analysis further indicate that C28(Cs)H is only with a small distortion of C28(Td)H symmetry. In addition, the transition states, as well as reaction pathways of X transfer reactions between different key points on C28(Td) representative patch are given to explore the possible reaction mechanism.  相似文献   

16.
The polyethersulfone (PES)-zeolite 3A, 4A and 5A mixed matrix membranes (MMMs) were fabricated with a modified solution-casting procedure at high temperatures close to the glass transition temperatures (Tg) of polymer materials. The effects of membrane preparation methodology, zeolite loading and pore size of zeolite on the gas separation performance of these mixed matrix membranes were studied. SEM results show the interface between polymer and zeolite in MMMs experiencing natural cooling is better (i.e., less defective) than that in MMMs experiencing immediate quenching. The increment of glass transition temperature (Tg) of MMMs with zeolite loading confirms the polymer chain rigidification induced by zeolite. The experimental results indicate that a higher zeolite loading results in a decrease in gas permeability and an increase in gas pair selectivity. The unmodified Maxwell model fails to correctly predict the permeability decrease induced by polymer chain rigidification near the zeolite surface and the partial pore blockage of zeolites by the polymer chains. A new modified Maxwell model is therefore proposed. It takes the combined effects of chain rigidification and partial pore blockage of zeolites into calculation. The new model shows much consistent permeability and selectivity predication with experimental data. Surprisingly, an increase in zeolite pore size from 3 to 5 Å generally not only increase gas permeability, but also gas pair selectivity. The O2/N2 selectivity of PES-zeolite 3A and PES-zeolite 4A membranes is very similar, while the O2/N2 selectivity of PES-zeolite 5A membranes is much higher. This implies the blockage may narrow a part of zeolite 5A pores to approximately 4 Å, which can discriminate the gas pair of O2 and N2, and narrow a part of zeolites 3A and 4A pores to smaller sizes. It is concluded that the partial pore blockage of zeolites by the polymer chains has equivalent or more influence on the separation properties of mixed matrix membranes compared with that of the polymer chain rigidification.  相似文献   

17.
Calculations with Hartree—Fock electron densities for the rare gas atoms He through Xe show that the gradient expansion for the kinetic energy functional, T[] = T0[] + T2[] + T4[] + … = ∫t() dτ, approximates the kinetic energy by averaging over the shell structure present in the true local kinetic energy density, t(), and that the accuracy of the gradient expansion improves with increasing atomic number. Components of t(), t0(), t2() and t4(), are exhibited and discussed. The defined function t() is everywhere positive.  相似文献   

18.
Synthesis of small crystal polycrystalline mordenite membrane   总被引:3,自引:0,他引:3  
Mordenite membrane was prepared on -Al2O3 tube by in situ hydrothermal synthesis with tetraethylammonium bromide (TEABr) as template agent. By the application of aging process of the parent solution, the size of mordenite crystals could be remarkably reduced from 20–30 (without aging) to 4–5 μm. The small crystal mordenite membrane had higher performance of pure gas permeation than big crystal mordenite membrane. The ideal selectivity of H2/N2 was 9.80, much higher than 3.82 of big crystals mordenite membrane. The membrane displayed high water-permselective performance in pervaporation (PV) test toward water/organic liquid mixtures. The highest separation factors achieved toward water/methanol, water/ethanol, water/n-propanol and water/i-propanol were 2600 (XW=50%, T=323 K), 5500 (XW=50%, T=343 K), 6000 (XW=15%, T=343 K) and 6800 (XW=50%, T=343 K), respectively.  相似文献   

19.
In the present study, an infrared (IR) high temperature cell was used, in combination with a Fourier transform infrared (FTIR) spectrometer for the development of an alternative temperature-programmed desorption (TPD) procedure. Three different adsorbates, i.e., benzene, toluene and ethylbenzene were non-isothermally desorbed from two zeolites H-ZSM-5 and H-Beta. The FTIR-TPD profiles were fitted with the help of the complementary error function. The fitting process was carried out with the help of a computer program which allows us to calculate two parameters, the temperature, T0 (K) and the temperature range ΔT (K), which, in conjunction with the complementary error function, characterizes the FTIR-TPD profile. Was found that the parameter T0 is linked with the adsorption energy of the adsorbate in the zeolite and the parameter ΔT was correlated with the transport process of the desorbed molecules inside the zeolites during the desorption process and with the presence of more than one type of adsorption sites. In conclusion, was confirmed that the FTIR-TPD methodology is appropriate for in situ observation of adsorbed molecules on zeolites, and that this technique makes available information concerning the adsorbed state of guest molecules in non-isothermal desorption.  相似文献   

20.
A novel optical configuration for inductively coupled plasma (ICP)-atomic emission spectrometry is presented. Plasma emission is measured axially via the bottom end of the ICP torch. Analytical performance, such as increase in signal-to-background ratio (SBR) over radially viewed ICP and linear dynamic range, is comparable to that of end-on axially viewed ICP reported in the literatures. Under typical ICP operating conditions (forward power=1.0–1.6 kW, central channel gas flow rate=0.8–1.4 l/min), SBR is generally five times or more that of radial-viewing mode (observation heights=3–20 mm) for atomic lines of elements of low to medium ionization potential (Na, K, Sr and Ba). The enhancement factor in SBR is two to four times for ionic lines (e.g. MgII) and atomic lines of elements of high ionization potential (Zn). The influence of ICP forward power and carrier gas flow rate on analyte emission intensity and SBR were also studied. Similar to radially viewed ICP, as forward power increases, the net emission intensity increases and SBR decreases. Using a constant flux of analyte aerosols, the net intensity decreases as the central channel gas flow rate increases. No trend of SBR vs. central channel gas flow rate, however, is found. The linear dynamic range starts and ends at analyte concentration 0.5–1 order of magnitude lower than the corresponding radial-viewing mode. As a result, the span of linear dynamic range is similar for all viewing modes. Matrix effects of K and Ca on atomic lines are different from those reported for end-on axially viewed ICPs, probably due to the difference in the plasma regions that were probed. The matrix effects on ionic lines, however, are similar in magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号