共查询到20条相似文献,搜索用时 15 毫秒
1.
修饰材料和酶在电极表面上的固定是目前制约葡萄糖生物传感器广泛应用的主要因素. 交替电沉积石墨烯和纳米金在玻碳电极表面以构建石墨烯/金复合材料. 电极放入2,5-二(2-噻吩)-1-对苯甲酸吡咯溶液(DPB)进行电聚合形成含有大量游离羧基的导电高分子膜. 以1-乙基-3-(3-二甲基氨丙基)-碳化二亚胺和N-羟基琥珀酰亚胺的混合溶液为活化剂将葡萄糖氧化酶共价键合于电极表面制备生物传感器. 采用拉曼光谱、X-射线衍射和扫描电镜对石墨烯/金复合材料的形貌和结构分析揭示交替电沉积得到了分散性良好的石墨烯/金复合材料. 此外, 修饰电极的电化学性质也被详细研究. 它的电活性面积、载酶量和表观米氏常数分别为0.1403 cm2、7.73×10-11 mol·cm-2和5.23×10-5 mol·L-1. 当葡萄糖浓度在5×10-6~5×10-4 mol·L-1之间, 传感器的差分脉冲伏安峰电流变化符合线性关系. 方法的检出限为1.7×10-6 mol·L-1. 传感器在4 ℃下放置四周后其电化学响应仍能保持95%以上. 由于石墨烯/金复合材料的电催化作用和导电高分子对酶的共价固定, 方法在灵敏度、选择性、稳定性和重现性方面优于文献报道的萄葡糖生物传感器, 它成功用于血清中微量葡萄糖的测定. 相似文献
2.
利用阴离子型聚合物聚乙烯吡咯烷酮(PVP)保护的带负电荷的还原态石墨烯(GN)与带正电荷的金纳米棒(AuNR)之间的静电吸附,通过层层自组装的方法研制出一种新型过氧化氢(H2O2)传感器。首先将PVP保护的石墨烯(PVP-GNs)吸附到表面干净的裸玻碳电极(GCE)上,再将PVP-GNs修饰的电极浸泡于金纳米棒溶液中,通过静电吸附将金纳米棒负载在PVP-GNs膜之上。以循环伏安及计时安培电流等方法对修饰电极的性质进行了表征。结果表明,制备的PVP-GNs-AuNRs/GCE对H2O2的催化还原显示出好的电催化活性。测定H2O2的线性范围为25~712μmol/L;检出限(S/N=3)为7.5μmol/L。此传感器制作简单,具有响应快、稳定性好、灵敏度高等特点。 相似文献
3.
依次电沉积氧化石墨烯、2,5二(2噻吩)-1-对苯甲酸吡咯和氯金酸于金电极表面,以EDC/NHS为活化剂,将黄曲霉毒素B1(AFB1)抗体共价连接在导电高分子膜上,最后滴涂1,3-二丁基咪唑六氟磷酸盐离子液体于上述修饰电极表面,制得AFB1免疫传感器。以Fe(CN)63-/4-的磷酸盐缓冲溶液(pH 7.0)为测试底液,采用循环伏安法和交流阻抗法考察此免疫传感器的电化学行为。研究表明:石墨烯和纳米金的引入明显提高了修饰层的电子转移速率,使电极的表观活性面积由裸金电极的0.1772 cm2增加到0.2188 cm2和0.2640 cm2。当AFB1浓度在3.2×10-15~3.2×10-13mol/L范围内,传感器的交流阻抗响应值与浓度呈线性关系,相关系数R2=0.994,检出限为1.1×10-15mol/L。传感器在4℃下保存20周以上,电化学响应保持基本不变。本方法的灵敏度和稳定性优于现有文献报道,并应用于花生样品中痕量AFB1的测定。 相似文献
4.
通过水热法合成了石墨烯-金纳米复合材料。透射电子显微镜直接证明了制备的石墨烯薄而透明的片状结构。X-射线光电子能谱和X-射线衍射结果也表明了金的存在和氧化石墨烯的还原。作为一个模型,将肌红蛋白固定到该复合材料修饰的玻碳电极上并用于生物传感器。所固定的肌红蛋白显示了一对对称的氧化还原峰并对过氧化氢的还原具有高的催化活性。在信噪比等于3的时侯该生物传感器的线性范围在0.1到1.5μmol.L-1,检测限为0.05μmol.L-1,并且具有好的选择性、重现性和稳定性。 相似文献
5.
将氧化石墨烯与非巯基修饰的DNA、纳米金相结合,构建了纳米金/石墨烯复合膜修饰生物传感器。用扫描电子显微镜对传感器的修饰膜进行了表征。实验结果发现,此复合膜传感器对多巴胺的电化学氧化起到明显的电催化作用。在此基础上,优化了多巴胺的测定条件。多巴胺的氧化峰电流在4.0×10~(-7) mol·L~(-1)~7.0×10~(-5) mol·L~(-1)范围内与其浓度呈良好的线性关系。该修饰传感器准确度高,重现性好,可用于实际样品的测定,回收率在95.0%~100%之间,结果满意。 相似文献
6.
7.
合成了新型的金纳米盒子材料,在金电极上通过金硫键自组装的方法修饰金纳米,再通过自组装和浸渍的方法修饰细胞色素c(Cyt c),构建了基于Cyt c的直接电子传递的H2O2电化学传感器,所得传感器的灵敏度为4.4A/(mol/L),线性范围为4.7×10-6~8.0×10-3 mol/L,检测限为1.5×10-6 mol/L。并将以金纳米盒子为基底的传感器与传统的电沉积金纳米,以及金纳米溶胶传感器做了对比,实验结果表明新型的金纳米盒子所修饰的传感器具有更好的灵敏度、更宽的线性范围及更低的检测限。 相似文献
8.
《化学学报》2012,70(11)
石墨烯材料和酶的固定对石墨烯基生物传感器性能及应用至关重要.金电极依次放入氧化石墨(0.05 mg/mL)和氯金酸(0.05 mmol/L)溶液中进行控制电位电解,循环以上操作20次后,转移至2,5-二(2-噻吩)-1-对苯甲酸吡咯单体溶液采用循环伏安法进行电聚合形成含有羧基的导电高分子膜,然后以1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)/N-羟基琥珀酰亚胺(NHS)为活化剂将辣根过氧化物酶共价键合在修饰电极表面制备过氧化氢生物传感器.研究表明,交替电沉积得到的石墨烯/金纳米复合材料分散性好,所制备的生物传感器对过氧化氢的氧化还原过程有显著的催化作用.过氧化氢浓度在2~200 nmol/L之间传感器的电流响应与浓度呈线性关系,相关系数(R2)为0.9996,方法的检测限是0.67 nmol/L(S/N=3),灵敏度明显优于现有文献报道.此外,共价键合方式固定酶使传感器的稳定性和方法的重现性大大提高.5 nmol/L的过氧化氢溶液测定20次,相对标准偏差为1.2%.在4℃下储藏3个月传感器电化学响应变化值少于3%.该方法已成功应用于牛奶样品中痕量过氧化氢的测定. 相似文献
9.
以抗坏血酸(AA)为还原剂,通过一步还原法将氧化石墨烯和氯金酸同时还原,合成石墨烯/金纳米复合材料,并直接滴涂于玻碳电极表面,构建基于石墨烯/金纳米复合材料的无酶葡萄糖传感器。采用循环伏安法和线性扫描伏安法对传感器的性质进行了研究。结果表明,该传感器能催化葡萄糖的氧化,且其氧化峰电流随葡萄糖浓度的增大而增大。测定葡萄糖的线性范围为0.01~2.5mmol/L(R=0.9964),检出限(S/N=3)为3μmol/L。对同一浓度的葡萄糖溶液平行测定8次,其电流强度的相对标准偏差(RSD)为2.6%。该传感器制作简单、稳定性好,将其用于葡萄糖注射液的检测,方法灵敏,其加标回收率为92.9%。 相似文献
10.
以石墨烯/纳米金修饰玻碳电极为基底, 用聚乙烯醇与离子液体复合物将辣根过氧化物酶固定于电极表面, 制备了过氧化氢生物传感器. 结果表明, 在0.1 mol/L HAc-NaAc+0.1mol/L KCl(pH=6.5)中, H2O2的氧化峰电流与其浓度在9.55×10-6~6.01×10-3 mol/L间呈良好线性关系, 检出限(3S/N)为3.3×10-7 mol/L. 用标准加入法做回收实验, 回收率在93.4%~100.5%之间. 该传感器对H2O2具有较高的灵敏度和较低的检测限, 稳定性和重现性良好, 使用寿命较长, 且制作成本低, 可多次重复使用. 相似文献
11.
12.
13.
概述了石墨烯、石墨烯氧化衍生物的性质及制备方法,重点介绍了石墨烯在生物传感器中的应用以及发展趋势(引用文献49篇)。 相似文献
14.
将分散于聚二烯丙基二甲基氯化铵(PDDA)中的多壁碳纳米管(MWCNT′s)滴涂在玻碳电极(GCE)表面制成PDDA-MWCNT′s/GCE修饰电极(简称电极Ⅰ);在氯金酸溶液中用恒电位沉积法使金纳米颗粒(AuNP′s)积镀于电极Ⅰ表面,制得AuNP′s/PDDA-MWNCT′s/GCE修饰电极(简称电极Ⅱ);将血红蛋白(Hb)滴于电极Ⅱ表面,用磷酸盐缓冲溶液冲洗后制成可供测定过氧化氢用的生物传感器Hb/AuNP′s/PDDA-MWCNT′s/GCE(简称电极Ⅲ)。与裸GCE、电极Ⅰ和Ⅱ相比较,在pH 6.8的磷酸盐缓冲溶液中,过氧化氢在电极Ⅲ上的还原峰电流明显提高,其值与过氧化氢浓度在1.0~1 800μmol.L-1范围内呈线性关系,其检出限(3S/N)为0.8μmol.L-1。应用此生物传感器测定消毒液中过氧化氢的含量,测定值与高锰酸钾滴定法的测定值相符。 相似文献
15.
16.
石墨烯/高分子复合薄膜的制备及应用 总被引:1,自引:0,他引:1
石墨烯是一种单原子厚度的二维碳纳米材料,具有优异的光、电、热和力学性能,以及巨大的比表面积.石墨烯与高分子之间能够通过共价或非共价作用(氢键、π-π作用、静电作用等)进行复合.这些相互作用既增加了石墨烯在高分子中的溶解性或分散性,也可以提高复合材料的性能或拓展其功能.目前常用的制备石墨烯高分子复合材料的方法有溶液混合、熔融共混和原位聚合等.该类复合材料可以通过蒸发溶剂、溶液涂覆、真空抽滤、层层自组装等途径加工成相应的复合膜.石墨烯高分子复合薄膜在制备高强度结构材料、超级电容器、光伏器件、锂离子电池负极材料以及传感器等方面具有重要的应用价值.本文综述了近年来石墨烯高分子复合薄膜的制备和应用方面的研究进展,并对该领域进行了展望. 相似文献
17.
结合氨基功能化离子液体修饰石墨烯(IL-GR)、纳米金(Au)等纳米材料的独特性质,以壳聚糖(CHIT)为交联剂,首先在玻碳电极表面固定IL-GR,然后吸附胶体金制得Au/IL-GR-CHIT复合膜,最后固定乙酰胆碱酯酶(AChE)制得新型有机磷检测酶传感器(AChE/Au/IL-GR-CHIT/GCE),并用于白菜样品中敌百虫农药的测定。采用透射电镜(TEM)对纳米材料进行了表征,循环伏安法(CV)和差示脉冲伏安法(DPV)研究了传感器的电化学性质。纳米复合物不仅为保持AChE的生物活性提供了适宜的微环境,并且对传感器性能的改善显示出强大的协同效应。在优化实验条件下,抑制率(A)与敌百虫浓度的负对数在2.0×10-10~1.0×10-6mol/L范围内呈良好的线性关系,检出限(S/N=3)为2.1×10-12mol/L。用于蔬菜中敌百虫含量的测定,回收率为97.5%~107.2%。 相似文献
19.
基于纳米金和硫堇固定酶的过氧化氢生物传感器 总被引:7,自引:0,他引:7
在铂电极上自组装一层纳米金(GNs), 构建负电荷的界面, 然后通过金-硫、金-氮共价键合作用和静电吸附作用自组装一层阳离子电子媒介体硫堇(Thio). 再以同样的作用自组装一层GNs和辣根过氧化酶(HRP)的混合物, 最后在电极最外层滴加一层疏水性聚合物壳聚糖(Chit), 由此制备了一种新型的过氧化氢生物传感器. 研究了工作电位、检测底液pH、温度对响应电流的影响, 以及GNs和HRP之间的相互作用, 探讨了传感器的表面形态、交流阻抗、重现性和稳定性. 该传感器的酶催化反应活化能为12.4 kJ/mol, 表观米氏常数为6.5×10-4 mo/L, 在优化的实验条件下, 所研制的传感器对H2O2的线性范围为5.6×10-5~2.6×10-3 mol/L, 检出限为1.5×10-5 mol/L. 应用此方法制备了HRP和葡萄糖氧化酶(GOD)双酶体系葡萄糖生物传感器, 并应用于实验样品葡萄糖含量的测定. 相似文献
20.
将导电导热性石墨烯(GR)引入光刻胶SU-8中, 制备了具有导电性的复合光刻胶. 采用超景深显微镜和万用表表征了石墨烯在复合光刻胶中的分散性及复合光刻胶的导电性. 通过光刻法将设计的图案转移到氧化铟锡(ITO)玻璃表面制备了一种新型的GR/SU-8图案化电极元件. 进一步在GR/SU-8/ITO表面电化学原位还原CuNPs, 制备了一种新型无酶传感器. 实验结果表明, 该传感器具有优异的电子转移性能, 在110 mmol/L浓度范围内对过氧化氢具有良好的响应(R2=0.999), 同时稳定性优异, 15 d后电流响应仍可保持90%以上, 表明该导电光刻胶可用于电化学传感领域. 相似文献