首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
采用溶胶-凝胶法制备了SiO2/TiO2杂化材料,并通过双官能团试剂3-(甲氧基硅烷基)甲基丙烯酸丙酯(γ-MAPS)对其进行改性;改性溶胶与甲基丙基酸丁酯(BMA)作为功能单体,在毛细管中进行原位聚合反应,制备了新型的有机-无机杂化毛细管整体柱。采用扫描电子显微镜观察了整体柱柱床的形貌。以硫脲为电渗流标记物对所制备的整体柱进行了柱性能评价,考察了柱的稳定性和重现性,获得了88000plates/m的柱效;考察了中性物质在柱上的的保留行为,得出该柱具有反相电色谱保留性能。通过对2种短肽(磷酸肽和非磷酸肽)洗脱测试,实现了对磷酸肽的有效富集与分离。  相似文献   

2.
李英杰  郝秀菊  张春雨  梁辉 《应用化学》2010,27(12):1457-1461
采用溶胶-凝胶法制备了SiO2/TiO2杂化材料,并通过双官能团试剂3-(甲氧基硅烷基)甲基丙烯酸丙酯(γ-MAPS)对其进行改性;改性溶胶与甲基丙基酸丁酯(BMA)作为功能单体,在毛细管中进行原位聚合反应,制备了新型的有机-无机杂化毛细管整体柱。 采用扫描电子显微镜观察了整体柱柱床的形貌。 以硫脲为电渗流标记物对所制备的整体柱进行了柱性能评价,考察了柱的稳定性和重现性,获得了88000 plates/m的柱效;考察了中性物质在柱上的的保留行为,得出该柱具有反相电色谱保留性能。 通过对2种短肽(磷酸肽和非磷酸肽)洗脱测试,实现了对磷酸肽的有效富集与分离。  相似文献   

3.
采用溶胶-凝胶法制备了SiO2/TiO2混溶胶.把溶胶抽入柱中,通过溶剂热反应和高温焙烧制得无机杂化毛细管电色谱开管柱.采用扫描电子显微镜(SEM)、能谱(EDS)、N2吸附-脱附(BET)对开管柱的结构形貌、成分和孔径分布进行了表征.以三种混合氨基酸作为分析物,获得了较好分离.  相似文献   

4.
制备一种新型的环糊精衍生物有机-无机杂化材料固定相开管柱,通过毛细管电色谱-质谱(CEC-MS)对其进行评价。以正硅酸乙酯和钛酸丁酯为无机前驱体,柠檬酸-β-环糊精(CA-β-CD)为有机体,通过溶胶-凝胶法制备CA-β-CD/SiO2-TiO2有机-无机杂化毛细管电色谱开管柱,并对其制备条件进行优化。采用扫描电子显微镜和红外光谱对开管柱的形貌和杂化材料的结构进行表征。利用制备的杂化开管柱在CEC-MS上对酪氨酸和色氨酸对映体混合物进行定性分析评价。  相似文献   

5.
以钛酸丁酯和正硅酸乙酯为无机体,以羧甲基-β-环糊精(CM-β-CD)为有机体,在有机相与无机相的质量比为4比3时,通过溶胶-凝胶法制备了CM-β-CD/SiO2/TiO2溶胶作为固定相,从而制成新型的环糊精基有机-无机杂化毛细管色谱开管柱。用扫描电镜及红外光谱法对此开管柱进行表征,证明了固定相与毛细管内壁均匀键合并紧密结合;羧基与Ti-O发生键合并形成了保留环糊精的新型配合物。应用此开管柱对氨基酸对映体、氨基酸混合物和手性药物进行分离,均达到基线分离。试验选用含30%(体积分数)乙腈的磷酸二氢钠缓冲溶液(pH 8.0)为流动相,分离电压15kV,检测波长200nm。此开管柱的最高柱效为每米塔板数(N)116 478;连续10次进样,其迁移时间的相对标准偏差为3.1%。  相似文献   

6.
具有光催化性能的TiO_2-SiO_2/TiO_2两层增透膜的设计与制备   总被引:1,自引:0,他引:1  
采用膜层设计理论设计了以TiO2为内层膜,TiO2-SiO2复合膜为外层膜的两层增透膜,以钛酸丁酯(TBOT)和正硅酸乙酯(TEOS)作为前驱体,采用溶胶-凝胶法制备了TiO2溶胶以及SiO2溶胶,将两种溶胶按比例混合得到了TiO2-SiO2复合溶胶,在高硼硅玻璃上镀膜测试。透过率测试结果表明,在波长为550 nm处的透过率最高能达到99.4%。在光催化实验中,采用罗丹明B模拟有机污染物,考察了TiO2对光催化反应的影响。结果表明,在TiO2存在的情况下,罗丹明B的降解速度大大提高,光催化效率显著增加。  相似文献   

7.
以CuSO_4·5H_2O和正硅酸乙酯为前驱体,配制了稳定透明的Cu~(2+)-SiO_2复合溶胶电解液。采用电化学-溶胶凝胶方法,在恒电位-0.9 V下得到Cu-SiO_2复合膜,该复合薄膜分别在250和450℃的热处理后得到Cu_2O-SiO_2和CuO-SiO_2复合薄膜。采用XRD、SEM/EDX和台阶仪表征了复合薄膜的组成、形貌和厚度;采用紫外-可见光谱和Z扫描技术研究了复合薄膜的线性和三阶非线性光学性能。结果表明Cu2O-SiO_2和CuO-SiO_2复合薄膜中的Cu含量、Cu的形态(如Cu_2O、CuO)及Cu_2O或CuO颗粒大小影响薄膜的光学带隙和三阶非线性光学性能,2种薄膜的光学带隙分别是2.67和2.54 eV,三阶非线性极化率χ(3)分别为2.31×10~(-6)和1.36×10~(-6) esu。  相似文献   

8.
以2,5-二巯基噻二唑、异佛尔酮二异氰酸酯(IPDI)、对苯二甲醇和甲基丙烯酸羟乙酯(HEMA)为主要原料制备紫外光固化预聚物;以钛酸丁酯(TBT)为前驱体,以硅烷偶联剂(KH570)为改性剂,采用溶胶-凝胶法制得均一、稳定的TiO2溶胶;采用紫外光固化的方式将紫外光固化预聚物与TiO2溶胶进行杂化制得TiO2溶胶掺杂改性的高折光复合材料。通过红外光谱、纳米粒度分析、热重分析、阿贝折光仪、紫外-可见分光光度计、X射线衍射仪和扫描电子显微镜等表征手段对制备的紫外光固化预聚物、TiO2溶胶和TiO2溶胶掺杂改性的高折光复合材料的相关性能进行分析。结果表明:通过紫外光固化的方式能使TiO2溶胶比较均匀地分散在紫外光固化预聚物中,得到TiO2溶胶掺杂改性的高折光复合材料;随着TiO2溶胶掺杂量的增加,复合材料的裂解温度、冲击强度均有一定的提高;当掺杂TiO2溶胶的质量分数为1.25%时,复合材料透明且折光率高达1.841。  相似文献   

9.
溶胶-凝胶法制备四种环糊精衍生物毛细管气相色谱柱   总被引:1,自引:0,他引:1  
葛晓霞  齐美玲  李良  华菲  邵青龙  傅若农 《色谱》2005,23(3):305-307
采用溶胶-凝胶法制备了七(2,3,6-三-O-乙基)-β-环糊精(全乙基-β-CD)、七(2,3,6-三-O-丙基)-β-环糊精(全丙基-β-CD)、七(2,3,6-三-O-辛基)-β-环糊精(全辛基-β-CD)和2,6-二-O-苄基-β-CD 4种环糊精衍生物毛细管气相色谱柱。在制备方法上,仿照一般动态法,大大简化了制备过程,缩短了制备时间。所得色谱柱的理论塔板数在3000/m左右,能够很好地分离苯衍生物的位置异构体,尤其对难分离的二甲苯、甲酚等取得了理想效果(α>1),其中溶胶-凝胶法制备的全烷基(乙基、丙基、辛基)化环糊精衍生物柱的分离能力优于2,6位苄基衍生化的环糊精柱。 同一根柱不同次进样和不同柱之间表现出良好的重复性,保留时间的相对标准偏差小于8.5%;对使用大约40次后的溶胶-凝胶柱重新进行测试,柱效下降不明显,说明该类色谱柱的稳定性良好。  相似文献   

10.
采用溶胶凝胶技术对 Luminol- Co( ) - H2 O2 体系中的 Co( )和 Luminol试剂进行了固定化 ,并将其用于化学发光法测定 H2 O2 。试验结果表明 ,固定柱的洗脱液中 Co( )的浓度稳定 ,测定的线性范围为 2× 1 0 - 6~ 1× 1 0 - 4 mol·L- 1 ,相关系数大于 0 .997,检出限为 0 .6μmol·L- 1 。1 0次测定的 RSD为 1 .7% ,单次测定能在 1 min内完成。方法成功地用于雨水中 H2 O2 的测定。  相似文献   

11.
采用溶胶-凝胶法低温制备了具有锐钛矿、板钛矿双晶型的TiO2薄膜. 分别利用X射线衍射(XRD)、透射电子显微镜(TEM)、UV-Vis透光率曲线和原子力显微镜(AFM)等手段对所得TiO2溶胶和薄膜进行了性能表征. 采用光催化降解罗丹明B水溶液评价TiO2薄膜的光催化活性. 结果发现, 所得TiO2薄膜具有较高的透明度和光催化活性. 同时, 考察了溶胶回流温度对所制备TiO2薄膜性能的影响, 发现升高溶胶回流温度可以完善薄膜的晶型, 增大薄膜的粗糙度, 从而提高薄膜的光催化活性. 溶胶回流温度为100 ℃时所制备的TiO2薄膜具有最高的光催化活性.  相似文献   

12.
首次将溶胶-凝胶法用于制备Al2O3-PLOT毛细管色谱柱.采用正硅酸乙酯、稀盐酸以及氧化铝的乙醇悬浮液组成的溶胶体系,高压动态法涂敷石英毛细管,然后通过高温凝胶反应固定Al2O3涂层,再用无机盐溶液淋洗灭活得到成品.考察制备过程的重复性,表明溶胶-凝胶法制备Al2O3-PLOT色谱柱简单易行,重复性好;对色谱柱性能进行评价,18组分C1 ~C5烃类标准气完全基线分离,环丙烷和丙烯的分离度为1.55 ~1.65,甲烷和正丁烷保留时间变化范围分别小于0.5%和1%,色谱柱的耐温性和稳定性显著提高.  相似文献   

13.
分别采用溶胶-凝胶法和浸渍-水热法制得负载于活性炭(AC)的TiO2催化剂,并用扫描电镜(SEM)、X射线衍射(XRD)、拉曼光谱和氮气吸附等方法对催化剂进行了表征.结果表明:溶胶-凝胶法制得的TiO2以不规则碎片形式涂附在载体表面,而浸渍-水热法制得的球形TiO2颗粒呈柱形生长均匀覆盖在载体表面;不同温度处理的浸渍-水热法制得的TiO2/AC光催化剂的中孔和微孔比表面积均大于溶胶-凝胶法制得的样品,负载的TiO2粒径则小于溶胶-凝胶法制得的样品.对甲基橙(MO)溶液的光催化降解测试结果表明,600℃煅烧为两种方法的最佳热处理温度,浸渍-水热法制得的催化剂光催化效果明显强于溶胶-凝胶法的.  相似文献   

14.
以醋酸铜(Cu(Ac)2)和正硅酸乙酯(TEOS)为前驱体,柠檬酸钠(Na_3Cit)为配合剂,在室温下制备出物质的量之比n_(Cu~(2+))∶n_(Cit~(3-)) 为1∶1和1∶2的2种透明稳定的Cu(Ⅱ)-Cit~(3-)-SiO_2复合溶胶。以此为电解液,采用恒电位方法,在ITO阴极上直接制备出了Cu_xO-SiO_2复合薄膜。CV(循环伏安)和XRD(X射线衍射)结果表明,在低过电位和高过电位分别得到Cu2_O-SiO_2和Cu/Cu_2O-SiO_2薄膜。XRD和EDX(X射线散射能谱)结果表明,相同沉积条件下,n_(Cu~(2+))∶n_(Cit~(3-)) 为1∶1溶胶中得到的薄膜中Cu含量较1∶2溶胶中的高。薄膜在2种溶胶中的电化学形成机理不同,其原因在于溶胶中Cu(Ⅱ)存在的形式不同。CA(计时安培)和SEM(扫描电镜)结果一致表明,Cu和Cu_2O在2种溶胶中的成核机理与电位有关,随着过电位增大,成核机理从三维连续成核逐渐转向瞬时成核。  相似文献   

15.
将Ti(SO4)2溶于稀盐酸合成酸性钛溶胶,再将其与铝溶胶和六次甲基四胺溶液混合后采用油柱成型法制备了球形TiO2-Al2O3复合氧化物。通过XRD、低温氮吸附-脱附与NH3-TPD等手段对样品进行表征,结果表明600℃焙烧得到的球形TiO2-Al2O3中TiO2以无定型形式存在;随TiO2含量的增加,球形TiO2-Al2O3的比表面积、孔容和平均孔径呈增加趋势;TiO2的引入没有对球形TiO2-Al2O3的强酸和弱酸中心的强度产生影响,弱酸中心数量显著增加,强酸中心数量稍有增加;球形TiO2-Al2O3的堆密度和压碎强度随TiO2含量的增加而减小,颗粒直径基本保持不变。  相似文献   

16.
采用溶胶-凝胶技术,以四乙氧基硅烷(TEOS)和N-(β-氨乙基)-γ-氨丙基三乙氧基硅烷(AEAPTES)为反应物,制备了含氨基的硅胶整体柱,并将其应用于谷氨酸(Glu)的萃取.在优化的条件下,一段长4 cm、内径250 μm的毛细管萃取柱的柱容量为2.5 ng.  相似文献   

17.
本文采用改进的溶胶-凝胶法制备了具有锐钛矿晶型结构和较小晶粒尺寸的TiO2-SiO2溶胶,并以聚苯乙烯(PS)小球为模板,采用旋涂法制备了新型大孔TiO2-SiO2复合薄膜,探究了煅烧温度、不同硅钛比以及溶胶添加量对所制备的大孔薄膜形貌及光催化活性的影响,并考察了该薄膜真空活化前后(Ti3+掺杂后)在紫外及模拟太阳光下光催化降解有机污染物罗丹明B的活性。通过Raman、DRS、SEM、EPR等方法对薄膜进行表征,发现制备的复合薄膜具有高透明度、良好附着力及优异的光催化活性。  相似文献   

18.
溶胶-凝胶法制备开管毛细管柱的研究进展   总被引:2,自引:0,他引:2  
介绍了溶胶-凝胶法制备开管毛细管柱的方法,分析了溶胶-凝胶法制备开管毛细管柱的影响因素和特点,总结了溶胶-凝胶技术在毛细管气相色谱柱、毛细管液相色谱柱、毛细管电泳柱及电色谱柱方面的应用进展。  相似文献   

19.
以键合在5 μm硅胶上的纤维素-三(二甲基苯基氨基甲酸酯)为色谱柱的手性固定相,采用高效液相色谱(HPLC)法对外消旋的2-(9-蒽基)-2-甲氧基乙酸乙酯进行了手性拆分.对影响2-(9-蒽基)-2-甲氧基乙酸乙酯拆分的三个重要因素:流动相组成、流速、色谱柱温度进行了研究.实验结果表明,在流动相组成为正已烷-异丙醇(94/6,V/V),流速1.0 mL/min,柱温20℃的条件下,2-(9-蒽基)-2-甲氧基乙酸乙酯对映体得到很好的分离,分离度为3.63.  相似文献   

20.
采用溶胶凝胶-原位聚合法以正硅酸乙酯(TEOS)为硅源、乙烯基三乙氧基硅烷(VTEOS)为偶联剂制备了活性SiO2溶胶,经水解、缩合,再于引发剂AIBN作用下与丙烯酸进行原位聚合杂化,制得聚丙烯酸/SiO2杂化溶胶,陈化后用拉丝法制得聚丙烯酸/SiO2杂化纤维。研究了溶胶的杂化机理、成纤性能;采用红外光谱、扫描电子显微镜分析了杂化纤维的结构和微观形态;进行了杂化纤维的TGA和耐水性能测试。结果表明,该聚丙烯酸/SiO2杂化溶胶拉丝性能好,可拉丝时间达1h,杂化溶胶在粘度为1400~3000mPa.s时成纤性能好,可通过拉丝法制得形态良好的杂化纤维;聚丙烯酸与SiO2之间通过化学键作用,在纤维内部有机无机两相间形成均一的连续相;聚丙烯酸/SiO2杂化纤维的耐热和耐水性能均优于纯PAA。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号