首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecular imprinting is a novel technique used for chiral separation, artificial antibodies, sensors, and assays. Typically, molecular imprinted polymers (MIPs) are monoliths with irregular shapes. However, microspherical shapes with more uniform size can be obtained by the method of precipitation polymerization, which offers a higher active surface area by manipulating its compositions. In this study, MIP particles for the target molecule, morphine, were synthesized using a precipitation polymerization method that is more facile than the previous one that produced a thermally polymerized bulk. The conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was utilized to immobilize the MIP particles onto the indium tin oxide (ITO) glass as a MIP/PEDOT-modified electrode. The sensitivity for the MIP/PEDOT-modified electrode with MIP particles was 41.63 μA/cm2 mM, which is more sensitive than that with non-MIP particles or that of a single PEDOT film with no incorporated particles in detecting morphine ranging from 0.1 to 2 mM. The detection limit was 0.3 mM (S/N = 3). In addition, we presented that the modified electrode can discriminate codeine that plays an interfering species.  相似文献   

2.
In this work, a molecularly imprinted polymer (MIP) of morphine (MO) was prepared through thermal radical copolymerization of methacrylic acid (MAA) and ethylene glycol dimethacrylate (EDMA) in the presence of MO templates, and a molecularly imprinted sorbent assay (MIA) based on a colorimetric reporter was developed to determine the adsorption isotherm of MO-MIP binding. In practice, the MO-bound MIP was brought into contact with an aqueous mixture of Fe3+ and [Fe(CN)6]3− so that the 3-phenolic group of MO was oxidized and Fe3+ was reduced to Fe2+. As a result, the MO-bound MIP was stained with Prussian blue (PB), which was attributed to the instant co-precipitation of Fe2+ and [Fe(CN)6]3− (Ksp=10−40). Accordingly, MO-MIP binding of the blue dye could be detected by visible spectroscopy. In addition, such staining could successfully distinguish MO from codeine. Upon data analyses, a two-site binding isotherm with two dissociation constants of 6.00×10−5 and 1.03×10−3 M was found for MO-MIP binding. MIAs for non-MIP were also performed. In addition, the results of flow-system characterizations and the particle size effect are also described in this paper.  相似文献   

3.
Lakshmi D  Prasad BB  Sharma PS 《Talanta》2006,70(2):272-280
Molecularly imprinted polymers (MIP) have been elucidated to work as artificial receptors. In our present study, a MIP was applied as a molecular recognition element to a chemical sensor. We have constructed a creatinine sensor based on a MIP layer selective for creatinine and its differential pulse, cathodic stripping voltammetric detection (DPCSV) on a hanging mercury drop electrode (HMDE). The creatinine sensor was fabricated by the drop coating of dimethylformamide (DMF) solution of a creatinine-imprinted polymer onto the surface of HMDE. The modified-HMDE, preanodised in neutral medium at +0.4 V versus Ag/AgCl for 120 s, exhibited a marked enhancement in DPCSV current in comparison to the less anodised (≤+0.3 V) HMDE. The creatinine was preconcentrated and instantaneously oxidised in MIP layer giving DPCSV response in the concentration range of 0.0025-84.0 μg mL−1 [detection limit (3σ) 1.49 ng mL−1]. The sensor was found to be highly selective for creatinine without any response of interferents viz., NaCl, urea, creatine, glucose, phenylalanine, tyrosine, histidine and cytosine. The non-imprinted polymer-modified electrode did not show linear response to creatinine. The imprinting factor as high as 9.4 implies that the imprinted polymer exclusively acts as a recognition element of creatinine sensor. The proposed procedure can be used to determine creatinine in human blood serum without any preliminary treatment of the sample in an accurate, rapid and simple way.  相似文献   

4.
A novel chemiluminescence (CL) microfluidic system incorporating a molecularly imprinted polymer (MIP) preconcentration step was used for the determination of chloramphenicol in honey samples. The MIP was prepared by using chloramphenicol as the template, diethylaminoethyl methacrylate (DAM) as the function monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linking monomer, 2, 2′-dimethoxy-2-phenylacetophenone (DMPA) as the free radical initiator and toluene and dodecanol as the solvent. The MIP was pre-loaded into a 10 mm long, 2 mm wide and 150 μm deep channel in a planar glass microfluidic device. When the sample containing chloramphenicol was introduced into the microfluidic device it was first preconcentrated on the MIP then detected by an enhancement effect on the chemiluminescence reaction of tris(2, 2′-bipyridyl) ruthenium(II) with cerium(IV) sulphate in sulphuric acid. A micro-syringe pump was used to pump the reagents. The CL intensity was linear in relationship to the chloramphenicol concentrations from 1.55 × 10−4 to 3.09 × 10−3 μmol L−1 (r2 = 0.9915) and the detection limit (3σ) and the quantitation limit (10σ) were found to be 7.46 × 10−6 and 2.48 × 10−5 μmol L−1, respectively. This method offered a high selectivity and sensitivity for quantitative analysis of chloramphenicol in the honey samples.  相似文献   

5.
A selective molecularly imprinted solid-phase extraction (MISPE) for indomethacin (IDM) from water samples was developed. Using IDM as template molecule, acrylamide (AM) or methacrylic acid (MAA) as functional monomer, ethylene dimethacrylate (EDMA) as crosslinker, and bulk or suspension polymerization as the synthetic method, three molecularly imprinted polymers (MIPs) were synthesized and characterized with a rebinding experiment. It was found that the MIP of AM-EDMA produced by bulk polymerization showed the highest binding capacity for IDM, and so it was chosen for subsequent experiments, such as those testing the selectivity and recognition binding sites. Scatchard analysis revealed that at least two kinds of binding sites formed in the MIP, with the dissociation constants of 7.8 μmol L−1 and 127.2 μmol L−1, respectively. Besides IDM, three structurally related compounds — acemetacin, oxaprozin and ibuprofen — were employed for selectivity tests. It was observed that the MIP exhibited the highest selective rebinding to IDM. Accordingly, the MIP was used as a solid-phase extraction sorbent for the extraction and enrichment of IDM in water samples. The extraction conditions of the MISPE column for IDM were optimized to be: chloroform or water as loading solvent, chloroform with 20% acetonitrile as washing solution, and methanol as eluting solvent. Water samples with or without spiking were extracted by the MISPE column and analyzed by HPLC. No detectable IDM was observed in tap water and the content of IDM in a river water sample was found to be 1.8 ng mL−1. The extraction efficiencies of the MISPE column for IDM in spiked tap and river water were acceptable (87.2% and 83.5%, respectively), demonstrating the feasibility of the prepared MIP for IDM extraction. Figure Molecularly imprinted polymer-based solid-phase extraction for indomethacin  相似文献   

6.
Tarley CR  Segatelli MG  Kubota LT 《Talanta》2006,69(1):259-266
In this study, a sorbent flow preconcentration system coupled to amperometric detector for the chloroguaiacol (4-chloro-2-methoxyphenol) determination at submicromolar levels is described. The satisfactory selectivity of the proposed method was attained by means of the use of a chloroguaiacol-imprinted polymer, whose the synthesis was carried out by bulk polymerization. Flow and chemical parameters associated to the preconcentration system, such as sample pH, preconcentration and elution flow rates, concentration of the carrier solution (KCl) and eluent volume were investigated through multivariate analysis. The flow preconcentration of chloroguaiacol was not affect by equimolar presence of structurally similar phenolic compounds including catechol, 4-chloro-3-methylphenol, 4-aminophenol and 2-cresol, thus showing the good performance of the imprinted polymer. Under the best experimental conditions, it was obtained a preconcentration factor of 110-fold and low detection and quantification limits of 27 and 78 nmol L−1, respectively. The analytical curve covered a wide linear range from 0.05 up to 5.0 μmol L−1 (r > 0.999) and satisfactory precision (n = 8) evaluated by relative standard deviation (R.S.D.) were respectively, 5.5 and 4.2%, for solutions of 1.0 and 5.0 μmol L−1 chloroguaiacol. Other parameters related to the performance of the flow system were also evaluated including concentration efficiency of 27.5 min−1 and consumptive index of 0.09 mL. Recoveries varying from 93 up to 112% for water samples (tap water and river water) spiked with chloroguaiacol concentration were achieved, thus assuring the accuracy of the proposed flow preconcentration system.  相似文献   

7.
This paper describes the investigation of a molecularly imprinted polymer (MIP) as a sensing receptor for Al3+ ion detection by using an optical approach. Al3+ ion was adopted as the template molecule and 8-hydroxyquinoline sulfonic acid ligand as the fluorescence tag. The polymer was synthesised using acrylamide as monomer, 2-hydroxyethyl methacrylate as co-monomer and ethylene glycol dimethracylate as cross-linker. The free radical polymerisation was performed in methanol and initiated by 2,2′-azobisisobutyronitrile at 70 °C. The imprinted polymer was fluorometrically characterised using a fibre optic attachment in a self-designed flow-cell. NaF was used to leach the Al3+ ion from the MIP. The optimum pH for the rebinding of Al3+ ion with the leached polymer was found to be pH 5 and the fluorescence response was found to be stable within the buffer strength range of 0.05–0.10 M. The fluorescence intensity during Al3+ ion rebinding was inversely dependent on temperature, and a low interference response (<3%) toward metal ions except for Cu2+ and Zn2+ ions was observed. The polymer rebinding repeatability study conducted over 9 cycles with Al3+ ion (0.8×10−4 M) was found to give an RSD value of 2.82% with a standard deviation of 0.53. The dynamic range of the system was found to be linear up to 1.0×10−4 M Al3+ ion with a limit of detection of 3.62 μM.  相似文献   

8.
Zhou J  Ma C  Zhou S  Ma P  Chen F  Qi Y  Chen H 《Journal of chromatography. A》2010,1217(48):7478-7483
A simple, rapid and sensitive method for the determination of pirimicarb in tomato and pear using polymer monolith microextraction (PMME) based on the molecularly imprinted polymer (MIP) monolith combined with high-performance liquid chromatography-photodiodes array detector (HPLC-PAD) was developed. By optimizing the polymerization conditions, such as the nature of porogenic solvent and functional monomer, the molar ratio of the monomer and cross-linker, an pirimicarb MIP monolith was synthesized in a micropipette tip using methacrylic acid (MAA) as the functional monomer, ethylene dimethacrylate (EGDMA) as the cross-linker and the mixture of toluene-dodecanol as the porogenic solvent. The MIP monolith showed highly specific recognition for the template pirimicarb. The monolith was applied for the selective extraction of pirimicarb in tomato and pear. Several parameters affecting MIP-PMME were investigated, including the nature and volume of extraction solvent, sample volume, flow rate and sample pH. Under the optimum PMME and HPLC conditions, the linear ranges were 2.0-1400 μg/kg for pirimicarb in tomato and pear with the correlation coefficient of above 0.999. The detection limits (s/n=3) were both 0.6 μg/kg. The proposed method was successfully applied for the selective extraction and determination of pirimicarb in tomato and pear.  相似文献   

9.
One of the main challenges in the molecularly imprinted polymers (MIP) field is the proper MIP design for water-soluble compounds because of appearance of serious drawbacks in polar solvents and insolubility of those compounds in non-polar solvents which are commonly used for MIP synthesis. In this work a novel and simple method for synthesis of molecularly imprinted polymers for a water-soluble compound was introduced. Pyridoxine was chosen as a target molecule and the ion-pair complex formed between pyridoxine ion (Py+) and dodecyl sulfate ion (DS) was transferred into the chloroform via liquid-liquid extraction. Then polymerization was carried out in chloroform. The molecular mechanics and density functional theory were proposed to screen proper monomer. Binding energy, ΔE, of a template and a monomer as a measure of their interaction was considered. Ion-pair [Py+-DS] was supposed as a template molecule and acrylic acid, methacrylic acid, allyamine, vinylpridine and 2-hydroxy ethyl methacrylate were as tested monomers. The MIP synthesized using acrylic acid showed the highest selectivity to pyridoxine as predicted from the ΔE calculation. The obtained MIP showed very high affinity against vitamin B6 in comparison to non-imprinted polymers (NIP). It was proved that the obtained MIP with introduced method was much better than that prepared in methanol as porogen. It was showed that the MIP prepared by this new method could be used as an adsorber for extraction and determination of pyridoxine in real and synthetic samples.  相似文献   

10.
This work reports the preparation of a molecularly imprinted polymer (MIP) for selective catalytic detection of serotonin (5-hydroxytryptamine, 5-HT). The process is based on the synthesis of polymers with hemin introduced as the catalytic center to mimic the active site of peroxidase. The copolymer MIP, containing artificial recognition sites for 5-HT, has been prepared by bulk polymerization using methacrylic acid (MAA) and hemin as the functional monomers, and ethylene glycol dimethacrylate (EGDMA) as the cross-linker. For the determination of 5-HT, a flow injection analysis system coupled to an amperometric detector was optimized using multivariate analysis. The effects of different parameters, such as pH, buffer flow rate, buffer nature, peroxide concentration and sample volume were evaluated. After optimizing the experimental conditions, a linear response range from 1.0 up to 1000.0 μmol L−1 was obtained with a sensitivity of 0.4 nA/μmol L−1. The detection limit was found to be 0.30 μmol L−1, while the precision values (n = 6) evaluated by relative standard deviation (R.S.D.) were, respectively, 1.3 and 1.7% for solutions of 50 and 750 μmol L−1 of 5-HT. No interference was observed by structurally similar compounds (including epinephrine, dopamine and norepinephrine), thus validating the good performance of the imprinted polymer. The method was applied for the determination of 5-HT in spiked blood serum samples.  相似文献   

11.
Gholivand MB  Khodadadian M 《Talanta》2011,85(3):1680-1688
Molecularly imprinted polymers (MIPs) with high selectivity toward methocarbamol have been computationally designed and synthesized based on the general non-covalent molecular imprinting approach. A virtual library consisting of 18 functional monomers was built and possible interactions between the template and functional monomers were investigated using a semiempirical approach. The monomers with the highest binding scores were then considered for additional calculations using a more accurate quantum mechanical (QM) calculation exploiting the density functional theory (DFT) at B3LYP/6-31G(d,p) level. The cosmo polarizable continuum model (CPCM) was also used to simulate the polymerization solvent. On the basis of computational results, acrylic acid (AA) and tetrahydrofuran (THF) were found to be the best choices of functional monomer and polymerization solvent, respectively. MIPs were then synthesized by the precipitation polymerization method and used as selective adsorbents to develop a molecularly imprinted solid-phase extraction (MISPE) procedure before quantitative analysis. After MISPE the drug could be determined either by differential pulse voltammetry (DPV), on a glassy carbon electrode modified with multiwalled-carbon nanotubes (GC/MWNT), or high performance chromatography (HPLC) with UV detection. A comparative study between MISPE-DPV and MISPE-HPLC-UV was performed. The MISPE-DPV was more sensitive but both techniques showed similar accuracy and precision.  相似文献   

12.
《Analytical letters》2012,45(18):2896-2913
Abstract

A highly selective and effective method for the purification and preconcentration of norfloxacin (NFX) in seawater samples was developed based on molecularly imprinted solid-phase extraction (MISPE). The molecularly imprinted polymer was synthesized by precipitation polymerization. Methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) were used as the functional monomer and crosslinker, respectively. The resulting molecularly imprinted polymer (MIP) showed high adsorption for NFX and was selective for its solid-phase extraction. An offline MISPE method followed by high performance liquid chromatography with diode array detection was established for the determination of NFX in seawater. The recoveries of spiked seawater samples using the MISPE columns were satisfactorily higher than 77.6%. The relative standard deviation was less than 5.60%, and the limit of detection was 0.027?μg L?1. Four seawater samples obtained from the Bohai Sea were analyzed, and NFX was found only at one location at a concentration of 0.280?μg L?1.  相似文献   

13.
A novel and highly selective optical sensor with molecularly imprinted polymer (MIP) film was fabricated and investigated. The optical sensor head employing a medium finesse molecularly imprinted polymer film has been fabricated and characterised. A blank polymer and formaldehyde imprinted polymer were using methacrylic acid as the functional monomer and the ethylene glycol dimethacrylate as a crosslinker. The transduction mechanism is discussed based on the changes of optical intensity of molecularly imprinted polymer film acting as an optical reflected sensor. Template molecules, which diffused into MIP, could cause film density, and refractive index change, and then induce measurable optical reflective intensity shifts. Based on the reflective intensity shifts, an optical reflection detection of formaldehyde was achieved by illuminating MIP with a laser beam. For the same MIP, the reflective intensity shift was proportional to the amount of template molecule. This optical sensor, based on an artificial recognition system, demonstrates long-time stability and resistance to harsh chemical environments. As the research moves forward gradually, we establish the possibilities of quantitative analysis primly, setting the groundwork to the synthesis of the molecular imprinted optical fiber sensor. The techniques show good reproducibility and sensitivity and will be of significant interest to the MIPcommunity.  相似文献   

14.
表面印迹接枝技术即在硅胶表面或有机聚合物载体表面[1]、毛细管表面[2]进行接枝聚合并引进分子印迹的技术[3-6]。替米考星(Tilm icosin)是一种由泰乐菌素半合成的大环内脂类畜禽专用抗生素。本文以替米考星为模板分子,以甲苯为溶剂,以甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸  相似文献   

15.
We propose the use of Doehlert’s experimental design, a second-order uniform shell design, for the optimization of molecularly imprinted polymers (MIPs). We have chosen a simple model system where the influence of kind and degree of cross-linking on template recognition was studied using S-propranolol as the template. We found that Doehlert’s design allows—with very few experiments—one to screen the evolution of the binding capacity of a MIP as a function the different parameters, and thus appears to be a powerful means to screen for the best composition and synthesis method for MIPs. We believe that this chemometric tool can significantly accelerate the development of new MIPs as synthetic recognition elements, particularly in the context of a given application, and will be a versatile complement or alternative to first-order designs to fit complex processes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
The aim of this work was to develop a method for the clean-up of a mycotoxin, i.e. Ochratoxin A (OTA), from cereal extracts employing a new molecularly imprinted polymer (MIP) as selective sorbent for solid-phase extraction (SPE) and to compare with an immunoaffinity column. A first series of experiments was carried out in pure solvents to estimate the potential of the imprinted sorbent in terms of selectivity studying the retention of OTA on the MIP and on a non-imprinted polymer using conventional crushed monolith. The selectivity of the MIP was also checked by its application to wheat extracts. Then, after this feasibility study, two different formats of MIP: crushed monolith and micro-beads were evaluated and compared. Therefore an optimization procedure was applied to the selective extraction from wheat using the MIP beads. The whole procedure was validated by applying it to wheat extract spiked by OTA at different concentration levels and then to a certified contaminated wheat sample. Recoveries close to 100% were obtained. The high selectivity brought by the MIP was compared to the selectivity by an immunoaffinity cartridge for the clean-up of the same wheat sample. The study of capacity of both showed a significant higher capacity of the MIP.  相似文献   

17.
岳春月  丁国生  唐安娜 《色谱》2013,31(1):10-14
依据分子印迹技术(MIT)制备的分子印迹聚合物(MIP)颗粒对模板分子及其结构类似物具有特异性识别和选择性吸附作用,同时具有较大的比表面积和快速的传质动力学特性,因而被广泛用作液相色谱固定相和固相萃取材料。将MIP颗粒作为固定相应用于毛细管电色谱(CEC),结合了CEC的快速、高效和MIP的高亲和性、高选择性的特点,成为分析科学领域最具有发展前景的分离技术之一。MIP颗粒在CEC领域有几种不同的应用形式: 作为填充材料填充到毛细管柱中;作为嵌入材料嵌入到毛细管柱内部不同基质的骨架中;作为准固定相添加到CEC运行缓冲溶液中。本文综述了近几年MIP颗粒在CEC领域应用的发展,对该领域今后的发展前景进行了展望。  相似文献   

18.
苏丹红I分子印迹聚合物的制备及其性能评价   总被引:1,自引:0,他引:1  
戴晴  王妍  包学伟  荆涛  郝巧玲  周宜开  梅素容 《色谱》2009,27(6):764-768
以苏丹红I为模板分子,通过沉淀聚合法制备了一种对苏丹红I具有特异性吸附的分子印迹聚合物。通过选择性评价和前沿色谱实验,评价了致孔剂的选择和用量、功能单体和模板分子的物质的量比对分子印迹聚合物识别性能的影响。实验结果表明: 当以甲醇和乙腈的混合液(体积比为30:10)为致孔剂,甲基丙烯酸(MAA)为功能单体,且功能单体和模板分子的物质的量比为8:1时,分子印迹聚合物的印迹因子为2.32,亲和位点总数(Bt)为0.50 μmol/g;将其作为固相萃取柱填料用于辣椒粉样品中痕量苏丹红I的净化和富集,结果表明: 苏丹红I浓度在10~500 μmol/L范围内时,呈现良好的线性关系(r=0.999);检出限为3.3 μmol/L,加标回收率为95.87%~98.41%,相对标准偏差低于3.1%。该方法有望用于辣椒粉样品中苏丹红I添加剂的常规检测。  相似文献   

19.
The design and construction of a highly selective voltammetric sensor for metronidazole by using a molecularly imprinted polymer (MIP) as recognition element were introduced. A metronidazole selective MIP and a nonimprinted polymer (NIP) were synthesized and then incorporated in the carbon paste electrodes (CPEs). The sensor was applied for metronidazole determination using cathodic stripping voltammetric method. The MIP-CP electrode showed very high recognition ability in comparison to NIP-CPE. Some parameters affecting the sensor response were optimized and then the calibration curve was plotted. Two dynamic linear ranges of 5.64 × 10−5 to 2.63 × 10−3 mg L−1 and 2.63 × 10−3 to 7.69 × 10−2 mg L−1 were obtained. The detection limit of the sensor was calculated as 3.59 × 10−5 mg L−1. This sensor was used successfully for metronidazole determination in biological fluids.  相似文献   

20.
The synthesis of molecularly imprinted beads for the recognition of the protein Staphylococcus enterotoxin B (SEB) is described. Two kinds of organic silane (3-aminopropyltrimethoxysilane (APTMS) and octyltrimethoxysilane (OTMS)) were polymerized on the surface of polystyrene microspheres after the SEB template was covalently immobilized by forming imine bonds. The resulting imprinted beads were selective for SEB. The Langmuir adsorption models were applied to describe the equilibrium isotherms. The results showed that an equal class of adsorption was formed in the molecularly imprinted polymer (MIP) with the maximum adsorption capacity of 3.86 mg SEB/g imprinted beads. The MIP has much higher adsorption capacity for SEB than the nonimprinted polymer, and the MIP beads have a higher selectivity for the template molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号