首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the simultaneous determination of epinephrine (EP), uric acid (UA) and xanthine (XN) in the presence of ascorbic acid (AA) using electropolymerized ultrathin film of 5-amino-1,3,4-thiadiazole-2-thiol (p-ATT) modified glassy carbon (GC) electrode in 0.2 M phosphate buffer solution (pH 5). Although bare GC electrode resolves the voltammetric signals of AA and XN, it fails to resolve the voltammetric signals of EP and UA in a mixture. However, the p-ATT modified electrode not only separates the voltammetric signals of AA, EP, UA and XN with potential difference of 150, 120 and 400 mV between AA-EP, EP-UA and UA-XN, respectively but also shows higher oxidation current for these molecules. The p-ATT modified electrode exhibits excellent selectivity towards the oxidation of EP, UA and XN in the presence of 40-fold higher concentration of AA. Further, the p-ATT modified electrode was also used for the selective determination of EP in the presence of 40-fold higher concentrations of AA, UA and XN. Using amperometric method, we achieved the lowest detection of 40 nM EP and 60 nM each UA and XN. The amperometric current response was increased linearly with increasing EP concentration in the range of 4.0 × 10−8 to 4.0 × 10−5 M and the detection limit was found to be 27 × 10−11 M (S/N = 3). The practical application of the present modified electrode was demonstrated by determining the concentration of EP in epinephrine tartrate injection and XN in human urine samples.  相似文献   

2.
A novel plant tissue-based bioelectrode obtained by incorporating sunflower (Helianthus annuus L.) leaves tissue as a source of glycolate oxidase and peroxidase into a ferrocene-mediated carbon paste electrode for the determination of glycolic acid was developed. It was coupled with the flow-injection (FI) system and used as the basis to develop a novel FI amperometric procedure for glycolic acid determination. The flow-injection amperometric measurements were performed by injecting aliquot of glycolic acid solution into the flowing stream of 0.05 mol L−1 of phosphate buffer solution having pH 8.0 with a flow rate of 0.3 mL min−1. The bioelectrode consisted of 20% (w/w) of sunflower leaves tissue and 5% (w/w) of ferrocene at 0.00 V (vs Ag/AgCl). The bioelectrode exhibited a linear response from 1.0 × 10−6 up to 2.0 × 10−3 mol L−1 glycolic acid with a detection limit (S/N = 3) and a quantitation limit (S/N = 10) of 1 × 10−6 and 3.3 × 10−6 mol L−1, respectively. The sampling rate of 12 h−1 and a relative standard deviation of 1.67% (n = 15) were achieved. The bioelectrode response decreased to 70% of the original value within 90 continuous injections. The proposed bioelectrode was satisfactorily applied to glycolic acid determination in human urine samples after appropriate sample pretreatment. Results obtained by the FI method were compared favorably with those obtained by HPLC. It offers advantages, which included rapidity, high activity, limited stability, ease of preparation and low cost.  相似文献   

3.
Titanium phosphate grafted on the surface of silica gel (devoted briefly as Si-TiPH) was synthesized and used as bulk modifier to fabricate a renewable three-dimensional chemically modified electrode. The Si-TiPH bulk modified carbon paste electrode was used for the selective determination of dopamine (DA) in the presence of ascorbic acid (AA). The modified electrode offers an excellent and stable response for the determination of DA in the presence of AA. The differential pulse voltammetry peak current was found to be linear with the DA concentration in the range 2 × 10−7 to 1 × 10−6 and 2 × 10−6 to 6 × 10−5 mol L−1. The detection limit of the proposed method in the presence of 2.0 × 10−5 M of AA was found to be 4.3 × 10−8 mol L−1 for DA determination. The proposed method was successfully applied for the determination of DA in injections.  相似文献   

4.
A novel Cu-zeolite A/graphene modified glassy carbon electrode for the simultaneous electrochemical determination of dopamine (DA) and ascorbic acid (AA) has been described. The Cu-zeolite A/graphene composites were prepared using Cu2+ functionalized zeolite A and graphene oxide as the precursor, and subsequently reduced by chemical agents. The composites were characterized by X-ray diffraction, Fourier transform infrared spectra and scanning electron microscopy. Based on the Cu-zeolite A/graphene-modified electrode, the potential difference between the oxidation peaks of DA and AA was over 200 mV, which was adequate for the simultaneous electrochemical determination of DA and AA. Also the proposed Cu-zeolite/graphene-modified electrode showed higher electrocatalytic performance than zeolite/graphene electrode or graphene-modified electrode. The electrocatalytic oxidation currents of DA and AA were linearly related to the corresponding concentration in the range of 1.0 × 10−7–1.9 × 10−5 M for DA and 2.0 × 10−5–2.0 × 10−4 M for AA. Detection limits (<!-- no-mfc -->S/N<!-- /no-mfc --> = 3) were estimated to be 4.1 × 10−8 M for DA and 1.1 × 10−5 M for AA, respectively.  相似文献   

5.
Methylene blue (MB) was incorporated into mordenite zeolite by ion exchange reaction in aqueous phase. The dye is strongly retained and not easily leached from the zeolite matrix. The solid was characterized by XRD prior to using it for the electrode preparation. This compound was incorporated into a carbon paste electrode for cyclic voltammetric and amperometric measurements. Methylene blue immobilized on the support underwent a quasi-reversible electrochemical redox reaction. In various electrolyte solutions and changing the pH between 2.0 and 7.0, the midpoint potential remained practically constant, i.e. 153.7±0.8 mV. This is not the usual behavior of MB, because in solution phase its midpoint potential changes considerably as the pH changes. The electrode made with this material was used for the mediated oxidation of ascorbic acid. The anodic peak current observed in cyclic voltammetry was linearly dependent on the ascorbic acid concentration. At a fixed potential under static conditions, the calibration plot was linear over the ascorbic acid concentration range 2.0×10−5 to 8.0×10−4 M. The detection limit of the method is 1.21×10−5 M, low enough for trace ascorbic acid determination in various real samples.  相似文献   

6.
《Analytical letters》2012,45(3):451-465
Abstract

Methylene blue (MB) was incorporated into titanium phosphate (TiP) after pretreatment of TiP with the gas, n‐butyl amine. The dye is strongly retained and not easily leached from the layered host matrix. The adsorbed MB on TiP was used to prepare modified carbon paste electrodes (MCPE), which were studied voltammetrically and in amperometric flow injection (FI) mode for the electrocatalytic oxidation of ascorbic acid (AA). The electrochemical behavior of the immobilized dye was investigated with cyclic voltammetry, at a pH 7.0 phosphate buffer containing 0.5 M KCl, at different potential scan rates. The MB immobilized on the support underwent a quasi‐reversible electrochemical redox reaction. A homemade flow‐through electrochemical cell with a suitable transparent window for irradiation of the electrode surface was constructed and used for amperometric FI studies. The photoamperometric‐FI conditions were optimized for sensitivity and reproducibility at a flow rate of 1.5 mL/min, a transmission tubing length of 25 cm, a sample injection volume of 100 µL, and a constant applied potential of +100 mV vs. SCE. The calibration curve for AA was linear over the concentration range from 1.0×10?6 to 2.5×10?5 mol l?1 for both amperometric and photoamperometric studies. But the slope of the photoelectrocatalytic FIA procedure was improved about 52% compared with those obtained without irradiation. The results obtained for AA determination in some pharmaceutical products are in good agreement with those obtained using the procedure involving the reaction between triiodide and AA.  相似文献   

7.
Cyclic voltammetric investigation of the interaction of methylene blue (MB) with heparin (hep) at a gold electrode is presented. The combination of MB with heparin formed a nonelectroactive complex MB-hep, which resulted in the peak current decrease of MB. The anodic peak current difference of MB was found to be proportional to the concentration of heparin in the range of 0.666-64.5 μg mL−1 with a detection limit of 270 ng mL−1 and a satisfactory result was obtained for the determination of heparin in injection samples. The equilibrium constant for MB-hep complex was calculated to be 7.32 × 105. The dynamic process of competition of Ba2+ with methylene blue for binding heparin was monitored using quartz crystal microbalance (QCM) technique. The reaction rate constant between Ba2+ and MB-hep was estimated to be 0.0022 s−1.  相似文献   

8.
Li J  Lin XQ 《Analytica chimica acta》2007,596(2):222-230
A novel biosensor was fabricated by electrochemical deposition of gold nanoclusters on ultrathin overoxidized polypyrrole (PPyox) film, formed a nano-Au/PPyox composite on glassy carbon electrode (nano-Au/PPyox/GCE). The properties of the nanocomposite have been characterized by field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD) and electrochemical investigations. The nano-Au/PPyox/GCE had strongly catalytic activity toward the oxidation of epinephrine (EP), uric acid (UA) and ascorbic acid (AA), and resolved the overlapping voltammetric response of EP, UA and AA into three well-defined peaks with a large anodic peak difference. The catalytic peak currents obtained from differential pulse voltammetry increased linearly with increasing EP and UA concentrations in the range of 3.0 × 10−7 to 2.1 × 10−5 M and 5.0 × 10−8 to 2.8 × 10−5 M with a detection limit of 3.0 × 10−8 and 1.2 × 10−8 M (s/n = 3), respectively. The results showed that the modified electrode can selectively determine EP and UA in the coexistence of a large amount of AA. In addition, the sensor exhibited excellent sensitivity, selectivity and stability. The nano-Au/PPyox/GCE has been applied to determination of EP in epinephrine hydrochloride injection and UA in urine samples with satisfactory results.  相似文献   

9.
Mahajan RK  Walia TP  Sumanjit  Lobana TS 《Talanta》2005,67(4):755-759
The adsorptive cathodic stripping voltammetry technique (AdCSV) is used to determine copper(II) using salicylaldehyde thiosemicarbazone (N, S- donor) as a complexing agent on hanging mercury drop electrode at pH 9.3. Variable factors affecting the response, i.e. the concentration of ligand, pH, adsorption potential and adsorption time are assessed and optimized. The adsorbed complex of copper(II) and salicylaldehyde thiosemicarbazone gives a well defined cathodic stripping peak current at −0.35 V, which has been used for the determination of copper in the concentration range of 7.85 × 10−9 to 8.00 × 10−6 M with accumulation time of 360 s at −0.1 V versus Ag/AgCl. This technique has been applied for the determination of copper in various digested samples of whole blood at trace levels.  相似文献   

10.
Shuqing Dong  Yuzhi Fang 《Talanta》2009,80(2):809-303
In the paper, a new kind of vitamin B12 (acquo-cobalamine) chemically modified electrode was fabricated and applied in capillary zone electrophoresis coupled with amperometric detection (CZE-AD) for simultaneous determination of six antioxidants in fruits and vegetables. The catalytic electrochemical properties of the chemically modified electrode could obviously enhance oxidation peak heights responses by about five times to glutathione, ascorbic acid, vanillic acid, chlorogenic acid, salicylic acid, and caffeic acid compared with common carbon disk electrode. Furthermore, the effects of working electrode potential, pH and concentration of running buffer, separation voltage and injection time on CZE-AD were investigated. Under the optimum conditions, the six analytes could be completely separated and detected in a borate-phosphate buffer (pH 8.4) within 15 min. Their linear ranges were from 2.5 × 10−7 to 1.0 × 10−4 mol L−1 and the detection limits were as low as 10−8 mol L−1 magnitude (S/N = 3). The proposed method has been successfully employed to monitor the six analytes in practical samples with recoveries in the range 96.0-106.0% and RSDs less than 5.0%. Above results demonstrate that capillary zone electrophoresis coupled with electrochemical detection using vitamin B12 modified electrode as detector is of convenient preparation, high sensitivity, good repeatability, and could be used in the rapid determination of practical samples.  相似文献   

11.
Adrenaline was found to inhibit strongly the electrochemiluminescence (ECL) from the Ru(bpy)32+/tripropylamine system when a working Pt electrode was maintained at 1.05 V (versus Ag/AgCl) in pH 8.0 phosphate buffer. On this basis, a flow injection (FI) procedure with inhibited electrochemiluminescence detection has been developed for determination of adrenaline. The method exhibited a good reproducibility, sensitivity, and stability with a detection limit (signal-to-noise ratio = 3) of 7.0×10−9 mol l−1 and dynamic concentration range of 2×10−8 to 1×10−4 mol l−1. The relative standard deviation was 2.2% for 1.0×10−6 mol l−1 adrenaline (n=11). The method was successfully applied to the determination of adrenaline in pharmaceutical samples. Moreover, ECL emission spectra, UV-Vis absorption spectra and cyclic voltammograms of Ru(bpy)32+/tripropylamine/adrenaline were studied. The inhibition mechanism has been proposed as the interaction of electrogenerated Ru(bpy)32+* and the o-benzoquinone derivatives, adrenochrome and adrenalinequinone, at the electrode surface.  相似文献   

12.
Flow injection analysis (FIA) with amperometric detection was employed for the quantification of N-acetylcysteine (NAC) in pharmaceutical formulations, utilizing an ordinary pyrolytic graphite (OPG) electrode modified with cobalt phthalocyanine (CoPc). Cyclic voltammetry was used in preliminary studies to establish the best conditions for NAC analysis. In FIA-amperometric experiments the OPG-CoPc electrode exhibited sharp and reproducible current peaks over a wide linear working range (5.0 × 10−5-1.0 × 10−3 mol L−1) in 0.1 mol L−1 NaOH solution. High sensitivity (130 mA mol−1 cm2) and a low detection limit (9.0 × 10−7 mol L−1) were achieved using the sensor. The repeatability (R.S.D.%) for 13 successive flow injections of a solution containing 5.0 × 10−4 mol L−1 NAC was 1.1%. The new procedure was applied in analyses of commercial pharmaceutical products and the results were in excellent agreement with those obtained using the official titrimetric method. The proposed amperometric method is highly suitable for quality control analyses of NAC in pharmaceuticals since it is rapid, precise and requires much less work than the recommended titrimetric method.  相似文献   

13.
We report the synthesis and the electrochemical properties of hybrid films made of zinc oxide (ZnO) and Meldola's blue dye (MB) using cyclic voltammetry (CV). MB/ZnO hybrid films were electrochemically deposited onto glassy carbon, gold and indium tin oxide-coated glass (ITO) electrodes at room temperature (25 ± 2 °C) from the bath solution containing 0.1 M Zn(NO3)2, 0.1 M KNO3 and 1 × 10−4 M MB. The surface morphology and deposition kinetics of MB/ZnO hybrid films were studied by means of scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrochemical quartz crystal microbalance (EQCM) techniques, respectively. SEM and AFM images of MB/ZnO hybrid films have revealed that the surfaces are well crystallized, porous and micro structured. MB molecules were immobilized and strongly fixed in a transparent inorganic matrix. MB/ZnO hybrid films modified glassy carbon electrode (MB/ZnO/GC) showed one reversible redox couple centered at formal potential (E0′) −0.12 V (pH 6.9). The surface coverage (Γ) of the MB immobilized on ZnO/GC was about 9.86 × 10−12 mol cm−2 and the electron transfer rate constant (ks) was determined to be 38.9 s−1. The MB/ZnO/GC electrode acted as a sensor and displayed an excellent specific electrocatalytic response to the oxidation of nicotinamide adenine dinucleotide (NADH). The linear response range between 50 and 300 μM NADH concentration at pH 6.9 was observed with a detection limit of 10 μM (S/N = 3). The electrode was stable during the time it was used for the full study (about 1 month) without a notable decrease in current. Indeed, dopamine (DA), ascorbic acid (AA), acetaminophen (AP) and uric acid (UA) did not show any interference during the detection of NADH at this modified electrode.  相似文献   

14.
In this study, an electrochemical ascorbic acid (AA) sensor was constructed based on a glassy carbon electrode modified with palladium nanoparticles supported on graphene oxide (PdNPs-GO). PdNPs with a mean diameter of 2.6 nm were homogeneously deposited on GO sheets by the redox reaction between PdCl42− and GO. Cyclic voltammetry and amperometric methods were used to evaluate the electrocatalytic activity towards the oxidation of AA in neutral media. Compared to a bare GC or a Pd electrode, the anodic peak potential of AA (0.006 V) at PdNPs-GO modified electrode was shifted negatively, and the large anodic peak potential separation (0.172 V) of AA and dopamine (DA), which could contribute to the synergistic effect of GO and PdNPs, was investigated. A further amperometric experiment proved that the proposed sensor was capable of sensitive and selective sensing of AA even in the presence of DA and uric acid. The modified electrode exhibited a rapid response to AA within 5 s and the amperometric signal showed a good linear correlation to AA concentration in a broad range from 20 μM to 2.28 mM with a correlation coefficient of R = 0.9991. Moreover, the proposed sensor was applied to the determination of AA in vitamin C tablet samples. The satisfactory results obtained indicated that the proposed sensor was promising for the development of novel electrochemical sensing for AA determination.  相似文献   

15.
Wen Pan 《Talanta》2007,73(4):651-655
An amperometric sensor for the detection of difenidol, a tertiary amine-containing analyte, was proposed. Ruthenium(II) tris(bipyridine)/multi-walled carbon nanotubes/Nafion composite film was suggested to modify the glassy carbon electrode. The modified electrode was shown to be an excellent amperometric sensor for the detection of difenidol hydrochloride. The linear range is from 1.0 × 10−6 to 3.3 × 10−5 M with a correlation coefficient of 0.998. The limit of detection was 5 × 10−7 M, which was obtained through experimental determination based on a signal-to-noise ratio of three. The sensor was employed to the determination of the active ingredients in the tablets containing difenidol hydrochloride.  相似文献   

16.
Quintino MS  Angnes L 《Talanta》2004,62(2):231-236
This paper presents a simple, rapid and reproducible method of analysis of salbutamol in pharmaceutical products, utilizing batch injection analysis (BIA) associated with amperometric detection. A study of salbutamol oxidation demonstrated a strong dependence between electrode fouling and pH. All determinations were done utilizing a glassy carbon electrode in presence of 3.0 mol l−1 NaOH. A large linear dynamic range from 8×10−7 to 2×10−4 mol l−1 was obtained by using an injected volume of 100 μl with a detection limit of 2.5×10−7 mol l−1. R.S.D. of 0.92% for 50 successive injections of 4×10−6 mol l−1 of salbutamol and a sample throughput of 60 samples per hour were achieved. The method was applied for salbutamol quantification in syrups.  相似文献   

17.
Wei J  He JB  Cao SQ  Zhu YW  Wang Y  Hang GP 《Talanta》2010,83(1):190-196
A nonionic poly(2-amino-5-mercapto-thiadiazole) film was electrodeposited on a solid carbon paste electrode via a potential scanning procedure, and used for amperometric sensing of ascorbic acid (AA), dopamine (DA) and serotonin (ST). The highly electrocatalytic activity of the sensor to the three analytes was demonstrated from the sensitive and well separated voltammetric signals. The polymer film did not show significant accumulation effect on all the three species, reducing the fouling and deactivation of the electrode surface as well as the mutual interference among the analytes. The sensor achieved amperometric sensitivities of 1.92 nA (nmol L−1)−1 cm−2 to AA in the linear range of 0.025-1.95 μmol L−1, 3.76 nA (nmol L−1)−1 cm−2 to DA and 7.00 nA (nmol L−1)−1 cm−2 to ST both in the linear range of 0.02-1.56 μmol L−1. The lowest detection limits were found to be 1.5, 0.7 and 0.4 nmol L−1 for AA, DA and ST, respectively. This sensor was successfully employed for the successive determination of AA, DA and ST in pharmaceutical samples. The good antifouling property and reproducibility of the proposed sensor can be attributed to the nonionic polymer film without electrostatic attraction to the ionized species in the solutions.  相似文献   

18.
An amperometric nicotine inhibition biosensor has been substantially simplified and used for determination of nicotine in tobacco sample. Besides the use of single enzyme choline oxidase to replace bienzyme, the use of 1,4-benzoquinone as an electron mediator makes it possible to avoid the use of oxygen or hydrogen peroxide sensor as the internal transducer. Choline oxidase was immobilized on the carbon paste electrode through cross-linking with bovine serum albumin (BSA) by glutaraldehyde. In the presence of choline oxidase and its endogenous cofactor flavin-ademine dinneleotide (FAD), choline was oxidized into betaine while FAD was reduced to FADH2 which subsequently reduced 1,4-benzoquinone into hydroquinone. The later was finally oxidized at a relatively low potential of +450 mV versus saturated calomel electrode (SCE). Nicotine inhibits the activity of enzyme with an effect of decreasing of oxidation current. The experimental conditions were optimized. The electrode has a linear response to choline within 1.25×10−4 to 1.25×10−3 mol l−1. The nicotine measurements were carried out in 0.067 mol l−1phosphate buffer of pH 7.4 at an applied potential of 450 mV versus SCE. The electrode provided a linear response to nicotine over a concentration range of 2.0×10−5 to 9.2×10−4 mol l−1 with a detection limit of 1.0×10−5 mol l−1. The system was applied to the determination of nicotine in tobacco samples.  相似文献   

19.
Issa YM  Zayed SI 《Talanta》2006,69(2):481-487
New clobutinol (Clob) ion-selective polyvinyl chloride (PVC) membrane electrodes, based on the ion-associates of Clob with phosphotungstic acid or phosphomolybdic acid were prepared using dibutyl phthalate as plasticizing solvent. The electrodes were characterized in terms of membrane composition, temperature and pH. The sensors showed a near-Nernstian response over the concentration ranges (6.31 × 10−6)-(1.00 × 10−2) and (5.01 × 10−5)-(1.00 × 10−2) M in the case of clobutinol-phosphotungstate ((Clob)3-PT) applying batch and flow injection (FI) analysis, respectively, and (1.58 × 10−5)-(1.00 × 10−2) and (5.01 × 10−5)-(1.00 × 10−2) M in case of clobutinol-phosphomolybdate ((Clob)3-PM) for batch and FI analysis systems, respectively. The electrodes were successfully applied for the potentiometric determination of ClobCl in pharmaceutical preparation and urine in steady state and flow injection conditions. The electrodes exhibit good selectivity for Clob with respect to a large number of inorganic cations, sugars and amino acids.  相似文献   

20.
Qu F  Shi A  Yang M  Jiang J  Shen G  Yu R 《Analytica chimica acta》2007,605(1):28-33
Prussian blue nanowire array (PBNWA) was prepared via electrochemical deposition with polycarbonate membrane template for effective modification of glassy carbon electrode. The PBNWA electrode thus obtained was demonstrated to have high-catalytic activity for the electrochemical reduction of hydrogen peroxide in neutral media. This enabled the PBNWA electrode to show rapid response to H2O2 at a low potential of −0.1 V over a wide range of concentrations from 1 × 10−7 M to 5 × 10−2 M with a high sensitivity of 183 μA mM−1 cm−2. Such a low-working potential also substantially improved the selectivity of the PBNWA electrode against most electroactive species such as ascorbic acid and uric acid in physiological media. A detection limit of 5 × 10−8 M was obtained using the PBNWA electrode for H2O2, which compared favorably with most electroanalysis procedures for H2O2. A biosensor toward glucose was then constructed with the PBNWA electrode as the basic electrode by crosslinking glucose oxidase (GOx). The glucose biosensor allowed rapid, selective and sensitive determination of glucose at −0.1 V. The amperometric response exhibited a linear correlation to glucose concentration through an expanded range from 2 × 10−6 M to 1 × 10−2 M, and the response time and detection limit were determined to be 3 s and 1 μM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号