首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A two-step thermochemical cycle with the ternary metal oxide system (Fe1 − xMnx)3O4/(Fe1 − xMnx)1 − yO is applied to convert solar energy to chemical energy. Experimental investigations on the water splitting reaction of (Fe1 − xMnx)1 − yO revealed temporary formation of a manganese rich rock salt phase and an iron rich spinel phase due to phase segregation processes.  相似文献   

2.
Lithium insertion to distorted ReO3-type metastable solid solution NbxW1−xO3−x/2 (0≤x<0.25) has been studied by chemical and electrochemical methods. In the course of lithium insertion into tetragonal compounds, transition to a cubic phase was found to occur in the region where values of y (in LiyNbxW1−xO3−x/2) fall between 0.2 and 0.3, and the phase transition was found to depend on the conditions of the reaction. Changes in OCV and lattice parameters in tetragonal region (y<0.2) were discussed from the viewpoint of the ordering of lithium ions. Also, the component diffusion coefficient of lithium in tetragonal compounds Li0.1NbxW1−xO3−x/2 (0≤x≤0.23) was found to increase with niobium content when x≤0.10, and to saturate at 4×10−9 cm2/s.  相似文献   

3.
The LaGa1−xyCoxMgyO3−δ solid solutions with rhombohedrally-distorted perovskite structure were ascertained to form in the concentration range of 0≤y≤0.10 at x=0.60 and 0≤y≤0.20 at x=0.35–0.40. Increasing cobalt content results in increasing electrical conductivity and thermal expansion of the perovskites. Thermal expansion coefficients of the LaGa1−xyCoxMgyO3−δ ceramics were calculated from the dilatometric data to vary in the range of 12.4–19.8×10−6 K−1 at 300–1100 K. Doping La(Ga,Co)O3−δ solid solutions with magnesium leads to increasing oxygen nonstoichiometry, electronic and oxygen ionic conductivity. Oxygen permeation fluxes through LaGa1−xyCoxMgyO3−δ membranes were found to be limited by the bulk ionic conduction and to increase with magnesium concentration, being essentially independent of cobalt content.  相似文献   

4.
Serial single-phase Gd2(Fe1−xyCoyTix)17 compounds have been synthesized. These compounds have a crystal structure belonging to rhombohedral lattice with space group. The lattice parameters of compounds decrease with cobalt content and increase with titanium content, respectively. The saturation magnetization decreases with increasing cobalt and titanium contents. The anisotropy fields increase to maximum then decrease with cobalt concentration. The magnetocrystalline anisotropy constants increase with cobalt content from negative to positive maximum and then decrease with Co concentration. The saturation moment of the compounds decreases linearly with cobalt concentration and decreases nonlinearly with titanium concentration.  相似文献   

5.
Materials from the Mn(0.5−x)CaxTi2(PO4)3 (0≤x≤0.50) solid solution were obtained by solid-state reaction in air at 1000 °C. Selected compositions were investigated by powder X-ray diffraction analysis, 31P nuclear magnetic resonance (NMR) spectroscopy and electrochemical lithium intercalation. The structure of all samples determined by Rietveld analysis is of the Nasicon type with the R space group. Mn2+/Ca2+ ions occupy only the M1 sites in the Ti2(PO4)3 framework. The divalent cations are ordered in one of two M1 sites, except for the Mn0.50Ti2(PO4)3 phase, where a small departure from the ideal order is observed by XRD and 31P MAS NMR. The electrochemical behaviour of Mn0.50Ti2(PO4)3 and Mn(0.5−x)CaxTi2(PO4)3 phases was characterised in Li cells. Two Li ions can be inserted without altering the Ti2(PO4)3 framework. In the 0≤y≤2 range, the OCV curves of Li//LiyMn0.50Ti2(PO4)3 cells show two main potential plateaus at 2.90 and 2.50–2.30 V. Comparison between the OCV curves of Li//Li(1+y)Ti2(PO4)3 and Li//LiyMn0.50Ti2(PO4)3 shows that the intercalation occurs first in the unoccupied M1 site of Mn0.50Ti2(PO4)3 at 2.90 V and then, for compositions y>0.50, at the M2 site (2.50–2.30 V voltage range). The effect of calcium substitution in Mn0.50Ti2(PO4)3 on the lithium intercalation is also discussed from a structural and kinetic viewpoint. In all systems, the lithium intercalation is associated with a redistribution of the divalent cation over all M1 sites. In the case of Mn0.50Ti2(PO4)3, the stability of Mn2+ either in an octahedral or tetrahedral environment facilitates cationic migration.  相似文献   

6.
New Scheelite-related solid solutions of the compositions Nax/2Bi1−x/2MoxV1−xO4 (0≤x≤1) and Bi1−x/3 MoxV1−xO4(0≤x≤0.2) have been synthesised by the substitution of Na and Mo at the A and B sites respectively of the ABO4 type ferroelastic BiVO4. The phases were characterised using chemical analysis, powder X-ray diffraction, scanning electron microscopy, EDAX, and Raman spectroscopy. While almost a continuous solid solution is obtained for the series Nax/2Bi1−x/2MoxV1−xO4, the absence of Na at the A-site results only in a narrow stability region for the other series, Bi1−x/3 MoxV1−xO4 where 0≤x≤0.2. Raman spectra of selected samples at room temperature also suggest that vanadium and molybdenum atoms are disordered at the tetrahedral sites.  相似文献   

7.
Chemical synthesis routes to LixMn2O4 (0.15≤x≤1) in non-equilibrium reduction processes were developed to carry out detailed structural analysis. Non-equilibrium LixMn2O4 (0.15≤x≤1) samples were prepared by chemical lithiation of λ-MnO2 with LiI for 24 h; longer than 1 week was needed to reach true equilibrium at room temperature. The samples were characterized by X-ray diffraction analysis. The phase diagram was different from that in the equilibrium state; three cubic phases (phases A, B and C) were observed for LixMn2O4 (0.15≤x≤1). There were two regions of two-phase coexistence: the region of 0.25<x<0.55 (phase B+phase C) and 0.6<x<1.0 (phase A+phase B). In the compositional range of 0.6<x<1.0, the lattice constants of phases A and B change with the lithium composition, this indicates that it is a structural anomaly with a metastable two-phase character in non-equilibrium reduction processes.  相似文献   

8.
High field magnetization measurements have been performed to examine the existence of itinerant metamagnetism in exchange-enhanced systems related to YCo2 together with Fe1−x CoxSi. In the Y(CoxFex)2 system, the meta magnetism inherent in YCo2 has been observed in 0.04 x0.07. The transition is not as sharp as in the Y(Co1−xAlx)2 system. Other exchange-enhanced paramagnets Y(CoxCux)2 and Y1−xLaxCox2 and weakly itinerant ferromagnet Fe1−xCoxSi exhibit no metamagnetic transition up to 430 kOe.  相似文献   

9.
Cation deficient spinels NixMn3−x3δ/4O4+δ (0≤x≤1) have been prepared by thermal decomposition of mixed oxalates Nix/3Mn(3−x)/3(C2O4nH2O in air at 623 K. They have been characterised by temperature programmed reduction (TPR) under H2, the reaction being followed by gravimetric and powder X-ray diffraction measurements. It has been shown that TPR proceeds in several steps. The first steps correspond to the loss of nonstoichiometric oxygen leading to the formation of a stoichiometric oxide. During the following stages the manganese cations are reduced, causing the spinel structure to be destroyed, and the formation of solid solution of NiO in a cubic MnO. Subsequently, Ni2+ cations undergo a reduction to metallic nickel, and, finally, a mixture of nonstoichiometric MnO1−δ and metallic nickel is formed. These oxides contain a high level of vacancies which vary with the nickel content with a maximum of δ≈1 near x=0.6. This nonstoichiometry is ascribed both to the presence of Ni3+ and excess of Mn4+.  相似文献   

10.
Measurements of magnetization and 57Fe Mössbauer spectra have been made for Y(Fe1−xRux)2. The C15 type cubic structure is stabilized for xx 0.7. The C15 compounds is ferromagnetic with Tc200 K and its saturation moment decreases monotonically with increasing x, while the 57Fe hyperfine field decreases only slightly with x. From these results, it is deduced that the Ru atoms have an induced moment of ≈1μB in the range x 0.2. In the C14 type phase, no magnetic ordering develops even at 4.2 K.  相似文献   

11.
Pr substituted at constant Ca concentration for Y in (Y1−xyPrxCay)Ba2Cu3O7−δ superconductors have been prepared under identical conditions and the temperature dependence of the electrical resistivity of these samples are measured. The resistively determined values of Tc decrease linearly with increasing x (0 ≤ x ≤ 0.2) for constant y = 0.10 and 0.15 which provides convincing evidence that the suppression of superconductivity by Pr is mainly due to magnetic pair breaking. The suppression of superconductivity can also be correlated to the observed changes in oxygen content determined by iodometric analysis and to the average Cu-valences. However, it is found that the observed suppression of Tc cannot be compensated by appropriate hole doping with Ca.  相似文献   

12.
The thermal expansion and low temperature and low temperature specific heat were measured for Y1−xScxMn2. The results are discussed in terms of spin fluctuations and compared with those of Y(Mn1−xAlx)2, which show al local moment character. It is revealed that Y1−xScxMn2 is a typical nearly antiferromagnet in which giant spin fluctuations are thermally excited.  相似文献   

13.
Formation of the La2Cu1−xCoxO4+δ solid solutions with orthorhombic K2NiF4-type structure was found to be in the range of 0≤x≤0.30 at temperatures above 1270 K. Incorporating cobalt into the copper sublattice of lanthanum cuprate leads to increasing oxygen hyperstoichiometry and decreasing electrical conductivity. Thermal expansion coefficients of the La2Cu1−xCoxO4+δ (x=0.02–0.30) ceramics at 470–1100 K were calculated from the dilatometric data to vary in the range (12.2–13.2)×106 K1. Studying the dependence of oxygen permeation fluxes through La2Cu(Co)O4+δ on the membrane thickness demonstrated that the oxygen transport at the thickness values below 1 mm is limited by both surface exchange rate and bulk ionic conductivity. Oxygen permeability of the La2Cu1−xCoxO4+δ solid solutions was ascertained to increase with cobalt concentration at x=0.02–0.10 and to decrease with further dopant additions, indicating a participation of interstitial oxygen in the ionic transport.  相似文献   

14.
Structure and magnetic properties of the Zr1−xMnxCo2+δ alloys were studied for 0 x <0.7, δ=0, 0.45. The cubic C15 Laves phase structure shows Mn solubility up to x≈0.4. The other Laves phase with the hexagonal C36 structure found for x0.5 apparently has a small region of Mn solubility in the vicinity of Zr0.4Mn0.6Co2. Though the parent Mn-free compounds are known to be paramagnetic, the Mn-substituted alloys show ferromagnetic behavior with the Curie temperatures up to 625 K and the room-temperature saturation magnetization of about 100 emu/g. The onset of ferromagnetism with the Mn substitution for Zr may be caused by polarization of itinerant 3d electrons, like it was earlier supposed for the off-stoichiometric ZrCo2+δ. The universal composition dependencies of the intrinsic magnetic properties for different δ can be obtained, if plotted against the amount of zirconium atoms missing in its sublattice. The room-temperature anisotropy with the noticeable anisotropy field of 24 kOe and the 1 1 0 easy magnetization direction laying in a basal plane was found in the hexagonal Zr0.5Mn0.5Co2.  相似文献   

15.
The magnetic phase diagram of La2(Cu1−xZnx)O4 has been determined from zero-field muon-spin-rotation (ZF-μSR) data taken at LAMPF for 0 ≤ x ≤ 0.10. Antiferromagnetic onset temperatures follow TN(x) from susceptibility measurements on the same samples. However, the order becomes long range, as evidenced by a well-defined internal magnetic field, only at temperatures well below TN. Extrapolation of our results yields TN → 0 K at x = 0.11 for a single (Cu1−xZnx)O2 plane, and comparison with YBa2(Cu1−xZnx)3O6 implies identical disruption of magnetism by Zn doping in the single- and double-plane systems.  相似文献   

16.
A series of apatite-type La–Ge–O ceramics were prepared and their cation-defect at the 4f+6h sites and oxide ion-defect at 2a site were investigated. In LaxGe6O12+1.5x ceramics of x=6–12, the higher conductivities were obtained in the region of apatite composition, Lax(GeO4)6O1.5x−12 (x=8–9.33), and the highest conductivity was achieved for La9(GeO4)6O1.5 (x=9), where the number of cation (La3+) occupying the 4f+6h sites is 9 and the number of oxide ion occupying the 2a site is 1.5. The ceramics with cation- and oxide ion-defects were La9−0.66xSrx(GeO4)6O1.5 (x=0–1), La9−1.33xZrx(GeO4)6O1.5 (x=0–1), La9−xSrx(GeO4)6O1.5−0.5x (x=0–3), La9−xZrx(GeO4)6O1.5+0.5x (x=0–1), Lax(GeO4)3x−21(AsO4)27−3xO1.5 (x=0–3), Lax(GeO4)33−3x(AlO4)3x−27O1.5 (x=0–3), La9(GeO4)6−x (AlO4)xO1.5−0.5x (x=0–3), La9(GeO4)6−x(AsO4)xO1.5+0.5x (x=0–1), La9.33−xSrx(GeO4)6O2−0.5x (x=0–1.2) and Lax(GeO4)4.5(AlO4)1.5O1.5x−12.75 (x=8.8–9.83), which were prepared by the partial substitution of La3+and GeO44−of the basic apatite La9(GeO4)6O1.5 with Sr2+ or Zr4+ and AlO45− or AsO43−. Such substitutions lowered the conductivity of La9(GeO4)6O1.5. These results were discussed by the electrostatic interaction between Sr2+, Zr4+, AlO45− or AsO43− and oxide ion as a conductive species.  相似文献   

17.
The polarized Raman spectra of Nd1+xBa2−xCu3O7−δ (−0.023≤x≤0.107) and Pr1+xBa2−xCu3O7−δ (0.01≤x≤0.15) single crystals have been investigated. It was found that the Cu(2) Ag mode softens by 6 cm−1 in Nd 1:2:3 and 4 cm−1 in Pr 1:2:3 as x increases. These frequency shifts cannot be explained by the change in the relevant bond lengths due to Nd(Pr)-substitution for Ba. The variations with x of the two low frequency modes may be affected by change of their hybridization and/or change of their force constants. The linewidths of Ba mode in Pr 1:2:3 are broader than those in Y 1:2:3. This result suggests that the Pr substitution on Ba sites occurred even in a very small value of x. In x(yy) geometry the relative intensity of the Ba and O(4) modes in Nd 1:2:3 is greater than those in Pr 1:2:3. The difference between Nd 1:2:3 and Pr 1:2:3 in the relative intensity of the Ba and O(4) modes may be produced by the chains.  相似文献   

18.
A new lithium ionic conductor of the thio-LISICON (LIthium SuperIonic CONductor) family was found in the binary Li2S–P2S5 system; the new solid solution with the composition range 0.0≤x≤0.27 in Li3+5xP1−xS4 was synthesized at 700 °C and characterized by X-ray diffraction measurements. Its electrical and electrochemical properties were studied by ac impedance and cyclic voltammetry measurements, respectively. The solid solution member at x=0.065 in Li3+5xP1−xS4 showed the highest conductivity value of 1.5×10−4 S cm−1 at 27 °C with negligible electronic conductivity and the activation energy of 22 kJ mol−1 which is characteristic of high ionic conduction state. The extra lithium ions in Li3PS4 created by partial substitution of P5+ for Li+ led to the large increase in ionic conductivity. In the solid solution range examined, the minimum conductivity was obtained for the compositions, Li3PS4 (x=0.0 in Li3+5xP1−xS4) and Li4P0.8S4 (x=0.2 in Li3+5xP1−xS4); this conductivity behavior is similar to other thio-LISICON family with the general formula, LixM1−yMy′S4 (M=Si, Ge, and M′=P, Al, Zn, Ga, Sb). Conduction mechanism and the material design concepts are discussed based on the conduction behavior and the structure considerations.  相似文献   

19.
The electrical property of (La1−xSrx)1−z(Al1−yMgy)O3−δ (LSAM; x≤0.3, y≤0.15 and z≤0.1) was measured using the DC four-probe method as a function of temperature (500–1000°C) and oxygen partial pressure (1–10−22 atm). Among LSAMs, (La0.9Sr0.1)AlO3−δ showed the highest ionic conductivity, σi=1.3×10−2 S cm−1 at 900°C. A simultaneous substitution at A and B sites or A site deficiency is expected to create larger oxygen vacancy and higher ionic conductivity. However, it showed a negative effect. The effect of the vacancy increase did not effect monotonously the ionic conductivity. It was found that the concentration of oxygen vacancy, [VO], influences not only the oxide ion conductivity, σi, but also the mobility, μv, of [VO]. These properties exhibit a maximum at around [VO]=0.05. With the increase in [VO], the activation energy, Ea, of the ionic conduction dropped from 1.8 to ca. 1.0 eV at [VO]=0.05 and became almost constant at [VO]>0.05. The dependency of the pre-exponential term, μ0v, and Ea on [VO] was analyzed and their effect on μv and σi was discussed with respect to crystal structure and defect association. It was estimated that the crystal structure mainly governs these properties. The effect of defect association could not be ignored but is considered to be a complicated correlation.  相似文献   

20.
The maximum solid solubility of gallium in the perovskite-type La1−xSrxFe1−yGayO3−δ (x=0.40–0.80; y=0–0.60) was found to vary in the approximate range y=0.25–0.45, decreasing when x increases. Crystal lattice of the perovskite phases, formed in atmospheric air, was studied by X-ray diffraction (XRD) and neutron diffraction and identified as cubic. Doping with Ga results in increasing unit cell volume, while the thermal expansion and total conductivity of (La,Sr)(Fe,Ga)O3−δ in air decrease with gallium additions. The average thermal expansion coefficients (TECs) are in the range (11.7–16.0)×10−6 K−1 at 300–800 K and (19.3–26.7)×10−6 K−1 at 800–1100 K. At oxygen partial pressures close to atmospheric air, the oxygen permeation fluxes through La1−xSrxFe1−yGayO3−δ (x=0.7–0.8; y=0.2–0.4) membranes are determined by the bulk ambipolar conductivity; the limiting effect of the oxygen surface exchange was found negligible. Decreasing strontium and gallium concentrations leads to a greater role of the exchange processes. As for many other perovskite systems, the oxygen ionic conductivity of La1−xSrxFe1−yGayO3−δ increases with strontium content up to x=0.70 and decreases on further doping, probably due to association of oxygen vacancies. Incorporation of moderate amounts of gallium into the B sublattice results in increasing structural disorder, higher ionic conductivity at temperatures below 1170 K, and lower activation energy for the ionic transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号