首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mechanical degradation and mechanochemical polymerization in polystyrene–styrene–cyclohexanone mixtures have been studied by ultrasonic irradiation at 60°C. The number of fresh polymer chains after the degradation is 2 × 10?5 mole l?1 hr?1. The rate equations for mechanical scission and mechanochemical polymerization have been deduced. The rate equation for mechanical scission was found to be in agreement with the expression of a previous paper. In addition, the rate equation for mechanochemical polymerization is not essentially different from that for the general radical polymerization in the presence of solvents. The kinetic chain length for polymeric free radicals in the polymerization process has been calculated. The mechanochemical polymerization of styrene was initiated by only one of the two kinds of end radicals after mechanical scission of polystyrene. The molecular weight distributions of the samples after the degradation and the polymerization have been compared and discussed.  相似文献   

2.
The catastrophic failure of a polymeric material is preceded by a number of complex, partially understood events occurring on the molecular level. These events range from the flow of ordered regions to the cleavage of primary bonds in the chain. In recent years, stress-induced bond cleavage in polymers has received increased attention, many authors nothing the presence of free radicals and/or volatile products released upon fracture; a free-radical decomposition mechanism involving up to 103 molecules per chain rupture also has been postulated. A special tensile stress–strain and shear apparatus was developed and located inside the ion-source housing of a time-of-flight mass spectrometer to characterize the volatile products released during mechanical degradation of polystyrene. Volatile compounds evolved during stress and fracture of polystyrene were monitored either continuously or by z-axis modulated oscilloscopic display. The polystyrene was purified by two methods: vacuum outgassing and fractional reprecipitation. Large amounts of styrene evolved from both the as-received and outgassed samples; however, essentially none was observed from the reprecipitated samples. Previous reports on monomer evolution during mechanical stress of polystyrene may be the result of residual monomer and not mechanical degradation products. The product of the surface density of primary radicals and the chain length for unzipping is less than 3 × 1010 radicals/mm2 indicating a maximum radical concentration of approximately 1010 radicals/mm2.  相似文献   

3.
Thermal and catalytic degradation of polystyrene waste over two different samples of natural volcanic tuff catalyst comparative with Florisil catalyst has been carried out in order to establish the conversion degree into styrene monomer. The polystyrene waste (PS) was subjected to a thermal degradation process in the range of 380–500°C in presence of studied catalysts in a ratio of 1/10 in mass, catalyst/PS. The catalysts were characterized by N2 adsorption-desorption isotherms (BET), Scanning Electron Microscopy (SEM) and Fourier-transform infrared spectrometry (FTIR). Influences of temperature and type of catalysts on the yields and on the distribution of end-products obtained by thermal and catalytic degradation of polystyrene waste have been studied. The maximum yields of liquid products were obtained at 460°C degradation temperature and were calculated between 83.45% and 90.11%. The liquid products were characterized by gas chromatography mass spectrometry (GC-MS) and FTIR analytical techniques. The GC-MS results showed that the liquid products contained styrene monomer up to 55.62%. The FTIR spectra of liquid products indicated the specific vibration bands of the functional groups of compounds of liquid products. The amounts of styrene monomer obtained were influenced by structural and textural properties of studied catalyst and the contribution on product distribution is discussed.   相似文献   

4.
A mathematical analysis of the behaviour of the molecular weights of addition polymers during a polymerisation process is described. Spinning disc reactor (SDR) technology has been shown to yield significant improvements in terms of polymerisation rates whilst retaining close control of the molecular weights and the molecular weight distributions[1,2]. However, understanding of the kinetics of the polymerisation process on a SDR remains unresolved. One of the questions to be addressed concerns the sizes of the macromolecules preferably formed during the polymerisation process. To address this question, a mathematical analysis of the observed trends in number and weight average molecular weight, monomer concentration and polydispersity during the polymerisation process on a SDR has been undertaken. To validate the results, experimental data obtained from benzoyl peroxide initiated free radical polymerisation of styrene on a SDR[2] was used. It was concluded that most of the monomers consumed are in the growth of smaller size chains.  相似文献   

5.
Summary: Pyrolysis‐GC‐MS and TGA‐FT‐IR methods have been used to perform a comparative degradation study of polystyrene and a polystyrene–clay composite. An abnormally high yield of α‐methylstyrene has been detected for the composite. This and other differences in degradation products have been explained by enhanced intermolecular interaction of the grafted PS chains, forming a brush structure. A conceptual model of the process has been suggested.

GC pyrograms of virgin PS (A) and PS–clay composite (B) pyrolyzed at 500 °C (1: styrene; 2: 2,4‐diphenylbut‐1‐ene; 2′: dimer derivatives; 3: 2,4,6‐triphenylhex‐1‐ene; 3′: trimer derivatives; 4: α‐methylstyrene).  相似文献   


6.
Well defined AB block copolymers of polystyrene and poly(dimethyl siloxane) have been used as stabilizers in the dispersion polymerisation of styrene in n-alkanes. The dependences of the particle size and particle size distribution on the relative block lengths in the copolymer have been studied. From phase separation studies of polystyrene in n-alkanes, both in the presence and absence of AB block copolymer, the threshold molecular weight for precipitation has been determined. An understanding of the dispersion polymerization kinetics and the broad particle size distribution follows from the relatively high solubility of low molecular weight polystyrene in n-alkanes.  相似文献   

7.
The rate of polymerization of styrene initiated by hydroperoxidized atactic polypropylene in a homogeneous toluene solution has been measured at 60 and 70°C. The reaction is first-order with respect to styrene concentration and independent of the polymeric hydroperoxide concentration above 2 × 10?5N hydroperoxide. The individual rate constants, length and frequency of the grafted polystyrene chains along the polypropylene backbone have been calculated and their significance discussed. The initiation rate constant compares closely with values reported for the analogous tert-butyl hydroperoxide-initiated polymerization. The rate constant for the chain transfer termination elementary step at 70°C., however, is 18 times the value reported for the tert-butyl hydroperoxide-initiated polymerization of styrene. This high constant accounts for the relatively low rates of polymerization observed and high termination rates. Chain deactivation is presumably accelerated by increased collisions between growing styrene chains and inactive propylene hydroperoxide and polystyrene molecules. Distribution of polystyrene grafts on polypropylene is estimated from knowledge of effects of styrene concentration, polymeric hydroperoxide concentration, and temperature upon the rate of polymerization.  相似文献   

8.
Summary The performance of pyrophyllite and halloysite clays in the degradation of polystyrene (PS) was investigated. The degradation was carried out in a semi-batch reactor with a mixture of polystyrene and catalysts at 400-450oC. The catalysts showed good catalytic activity for the degradation of PS with high selectivity to aromatics liquids. Styrene is the major product, and ethylbenzene is the second most abundant one in the liquid product. The catalytic degradation showed much less production of styrene dimers and higher selectivity to ethylbenzene than the thermal degradation did. High degradation temperature favored the production of styrene monomer, but it decreased the ethylbenzene production.  相似文献   

9.
Solutions of polystyrene in p-xylene were frozen in liquid nitrogen. No changes in molecular weight and distribution were caused by freezing solutions for a series of narrow distribution polystyrenes with molecular weights of near 2 × 106 and lower. Likewise a commercial polystyrene of M?w = 234,000 showed no change, even after 45 cycles of freezing and thawing. However, an ultrahigh molecular weight polystyrene (M?w = 7.3 × 106) showed appreciable degradation even after a few freezing cycles of its solutions. The changes in molecular weight and distribution were analyzed by gel-permeation chromatography. The results depended very much on the choice of solvent, cooling rate, and concentration. The extent of degradation was found to depend on polymer concentration in two distinct ways. Indeed, two different degradation mechanisms have been distinguished at low and at high concentrations. The change between mechanisms took place between 1.0 and 2.5 g/l. for polystyrene in p-xylene. This appears to provide a rare measure of polymer-polymer interactions (entanglements) in dilute solutions. Degradation in the entanglement region proceeded via a random chain-scission mechanism as tested by the Scott method. In contrast, at low concentrations degradation was characterized by the formation of appreciable amounts of low molecular weight polystyrene. The presence of an antioxidant (Ionol) during freezing did not change the extent of degradation significantly.  相似文献   

10.
 The emulsifier-free emulsion copolymerization of styrene and tetrahydrofurfuryl methacrylate (TMA) in aqueous phase is described. Monodisperse latex particles with diameters from about 280 to 620 nm are obtained consisting of a hydro-phobic polystyrene core and a hydrophilic poly-TMA shell. The influence of a variation of TMA, styrene and initiator (potassium persulfate) concentration in the original emulsion on particle size, molecular weight and composition of the copolymer is described. The concentration of TMA and initiator affects the number of primary particles but not the size of the final particles, whereas the styrene concentration strongly influences the particle diameter, a large size being favored by a high styrene concentration. The molecular weights of the polymers are between 6.2×104 and 7.0×105 g/mole. Size exclusion chromatography of polymer solutions in tetra-hydrofuran shows that high molecular weights are especially found in large particles, which are preferentially formed in emulsions with a high concentration of styrene. 1H-NMR spectroscopy of the polymer shows that only about 50% of the initial TMA concentration are polymerized in the particles. Thus the copolymers prepared at increasing styrene concentration and constant initiator concentration of the emulsion show an increasing polystyrene content and are formed in particles of increasing size. Received: 4 June 1997 Accepted: 19 August 1997  相似文献   

11.
The attempt to copolymerize ethylene and styrene using η3‐methallyl‐nickel‐diimine {[η3‐2‐MeC3H4]Ni[1,4‐bis(2,6‐diisopropylphenyl)C2H2N2][PF6]} ( 1 ) associated with MAO or TMA produces polystyrene, polyethylene and polyethylene with styrene end groups. Characteristics of the formed polymer depend on the reaction conditions. The presence of styrene in the medium reduces the polymerization productivity and the molecular weight of polyethylene. Incorporation of styrene into polyethylene is favored by a 1 /ethylene/MAO pre‐contact time and depends on the amount of styrene. Maximum incorporation was 4.4 wt.‐%. If styrene is introduced after the pre‐contact time, a bimodal product distribution is observed, suggesting the occurrence of two different catalytic species. If the co‐catalyst is changed from MAO to TMA, no copolymer is formed but the presence of styrene leads to higher amounts of branched polyethylene.  相似文献   

12.
Anionic polymerization technique has been utilized to synthesize a bilaterally sulfur‐functionalized polystyrene, SCH3‐polystyrene‐SH. The synthesis scheme consists of (1) initiation of 4‐vinylbenzylmethyl sulfide with sec‐butyllithium to form a living sulfur‐containing initiator, (2) polymerization of styrene, and (3) termination of growing polystyrene chain with ethylene sulfide. The resulting bilaterally sulfur‐functionalized polystyrene is used to make polystyrene/gold nanoparticles (AuNPs) nanocomposite with AuNPs formed in situ in polymer solution through reduction of AuClO4. The effects of the polymer/Au molar ratio as well as the molecular weight of polymer on the size and dispersion of formed AuNPs have been studied, and the superiority of bilaterally functionalized polymer to unilaterally functionalized polymer has been demonstrated. The polystyrene/AuNPs composite has been characterized by GPC, 1H‐NMR, 13C‐NMR, EDS, TEM, UV‐Vis, and DSC. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1268–1277  相似文献   

13.
Ring-chlorinated polystyrene has been prepared by reaction between polymer and chlorine at −20°C in the presence of iodine, using a 1·2:1 molar ratio of chlorine to styrene units. Although the product has a composition corresponding precisely to 1 Cl atom per styrene unit and the predominant site of chlorination is the para position in the aromatic ring, some ortho chlorination, backbone chlorination and unchlorinated structures have been shown to be present by characterisation spectroscopically and from degradation experiments.The chlorinated polymer loses the backbone chlorine readily as HCl at temperatures from 200°C. The resulting unsaturation in the backbone appears to destabilise the polymer towards chain scission and the main breakdown process, which resembles that of polystyrene in consisting of depolymerisation and transfer reactions, occurs over a wider temperature range and at lower temperatures than the decomposition of polystyrene. Products have been identified and estimated quantitatively.  相似文献   

14.
The transfer constants (Cs) of the polystyrene radical with some derivatives of phthalic acid have been determined. Among the agents used, tetrachlorophthalanhydride (TCPA) differs distinctly from other compounds by its value of Cs 3·1 × 10?3 for thermal and 3·4 × 10?3 for initiated polymerization of styrene. The values of Cs for phthalanhydride, dimethyl phthalate, and tetrachlorodimethyl phthalate are lower by two decimal orders. The considerable decrease in the degree of polymerization of styrene prepared in the presence of TCPA is mainly attributed to the increased reactivity of chlorine atoms in TCPA induced by the acceptor effect of anhydride ring. Participation of a TCPA-styrene complex in transfer reaction has been assumed but not proved.  相似文献   

15.
In the presence of SnCl4 in 1,2-dichloroethane solution, copolymers of styrene and methyl methacrylate undergo a Friedel-Crafts acylation reaction between the ester groups and the ortho position of adjacent styrene units to form a partial ladder polymer. This has been confirmed by infrared and ultraviolet spectral analysis and by observing the influence of substituted styrenes on the rate of the reaction. A similar reaction can be induced to occur between polystyrene and poly(methyl methacrylate). Thermal analysis measurements demonstrate that the degradation properties of copolymers of styrene and methyl methacrylate are profoundly changed by this treatment.  相似文献   

16.
The synthesis of poly(styrene-b-isobutylenes) by the sequential addition of styrene and isobutylene has been accomplished. First a stream of styrene was added to a cumyl chloride/TiCl4 in nhexane/methylene chloride charge at -50°C under quasiliving conditions. After the polystyrene block has reached a desirable sequence-length (molecular weight), gaseous isobutylene was continuously introduced to the quasiliving polystyrene carbocation until the polyisobutylene block also reached a desirable molecular weight. The M n versus monomer input plot was uninterrupted and linear over both monomer introduction phases, indicating quasi-living conditions over the entire regime of block copolymer synthesis. The block copolymers have been characterized by selective solvent extraction and GPC, and their compositions determined by 1H-NMR spectroscopy.  相似文献   

17.
Copolymerizations of styrene and the polyhedral oligomeric silsesquioxane (POSS)–styryl macromonomer 1‐(4‐vinylphenyl)‐3,5,7,9,11,13,15‐heptacyclopentylpentacyclo [9.5.1.13,9.15,15.17,13] octasiloxane have been performed with CpTiCl3 in conjunction with methylaluminoxane. Random copolymers of syndiotactic polystyrene (sPS) and POSS have been formed and fully characterized with 1H and 13C NMR, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis. NMR data reveal a moderately high syndiotacticity of the polystyrene backbone consistent with this use of CpTiCl3 as a catalyst and POSS loadings as high as 24 wt % and 3.2 mol %. Thermogravimetric analysis of the sPS–POSS copolymers under both nitrogen and air shows improved thermal stability with higher degradation temperatures and char yields, demonstrating that the inclusion of the inorganic POSS nanoparticles makes the organic polymer matrix more thermally robust. The polymerization activity and thermal stability are also compared with those of reported atactic polystyrene–POSS copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 885–891, 2002; DOI 10.1002/pola.10175  相似文献   

18.
Various analytical techniques (thermal analysis, vibrational spectroscopy, and chromatographic analysis) were used in order to monitor the changes in polymeric properties of recycled high-impact polystyrene (HIPS) throughout mechanical recycling processes. Three key quality properties were defined and analysed; these were the degree of mixing (composition), the degree of degradation, and the presence of low molecular weight compounds. Polymeric contaminations of polyethylene (PE) and polypropylene (PP) were detected in some samples using differential scanning calorimetry (DSC). Vibrational spectroscopy showed the presence of oxidised parts of the polymeric chain and gave also an assessment of the microstructure of the polybutadiene phase in HIPS. The presence of low molecular weight compounds in the HIPS samples was demonstrated using microwave-assisted extraction followed by gas chromatography-mass spectrometry (GC-MS). Several volatile organic compounds (VOCs), residues from the polymerisation, additives, and contaminations were detected in the polymeric materials. Styrene was identified already in virgin HIPS; in addition, benzaldehyde, α-methylbenzenaldehyde, and acetophenone were detected in recycled HIPS. The presence of oxygenated derivates of styrene may be attributed to the oxidation of polystyrene (PS). Several styrene dimers were found in virgin and recycled HIPS; these are produced during polymerisation of styrene and retained in the polymeric matrix as polymerisation residues. The amount of these dimers was highest in virgin HIPS, which indicated that emission of these compounds may have occurred during the first life-time of the products. This paper demonstrates that a combination of different analytical strategies is necessary to obtain a detailed understanding of the quality of recycled HIPS.  相似文献   

19.
The dispersion polymerizations of styrene (St) and methyl methacrylate (MMA) initiated by poly(oxyethylene) macroinimer (PEO-MIM) in ethanol/water were investigated at 50, 60 and 80°C. The polymerisation rate vs. conversion dependence was described by with a maxim at the beginning of polymerisation. Polymerization was faster with MMA than with St. The limiting conversion was inversely proportional to temperature and was much more pronounced with St. The rate of polymerization increased with temperature. The overall initial activation energy increased with conversion and reached value ca. 25 kJ.mol−1 for MMA and 50 kJ.mol−1 for styrene at ca. 60% conversion. The particle size was observed to decrease with increasing the macroinimer concentration. The polymer dispersions were unstable and a large amount of coagulum appeared during the polymerisation especially in the styrene-containing reaction system.  相似文献   

20.
Exclusive formation of poly(ethylene-co-styrene)s were observed by introduction of ethylene into the solution of syndiospecific styrene polymerisation using Cp'TiCl(2)(O-2,6-(i)Pr(2)C(6)H(3)) (Cp' = 1,2,4-Me(3)C(5)H(2), tert-BuC(5)H(4))-MAO catalysts without by-production of syndiotactic polystyrene, whereas the styrene polymerisation did not proceed when ethylene was removed from the reaction mixture of ethylene/styrene copolymerisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号