首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
张丹  刘芳  杨雪  许东华  石彤非 《应用化学》2022,39(8):1216-1223
选取了2种分子组成相同硬度不同的热塑性聚氨酯(TPU),将二者共混后得到了不同硬度的TPU共混物,探究了TPU共混物的硬度与冲击性能的关系。通过落球冲击试验、感压纸测试和冲击前后样品表面温度测试对TPU共混物的冲击性能进行表征。当样品的硬度越低时,峰值冲击力越小,冲击持续时间越长,冲击时的最大应变越大,冲击时样品的受力面积增大,对应的冲击时的峰值应力值减小。不同硬度样品的能量耗散比差别不大,但随硬度降低呈现小幅度上升趋势。冲击后的样品表面温度较冲击前有所上升,说明样品通过热的形式耗散了部分能量,各硬度样品的温度差值较为接近,这与不同硬度样品的能量耗散比的变化规律是相似的。所有样品均具有较高的能量耗散比,TPU能耗散大部分冲击能量,具有良好的抗冲击性能。  相似文献   

2.
Electronegativities of elements in covalent crystals   总被引:1,自引:0,他引:1  
A new electronegativity table of elements in covalent crystals with different bonding electrons and the most common coordination numbers is suggested on the basis of covalent potentials of atoms in crystals. For a given element, the electronegativity increases with increasing number of bonding electrons and decreases with increasing coordination number. Particularly, the ionicity of a covalent bond in different environments can be well-reflected by current electronegativity values; that is, the ionicity of chemical bonds increases as the coordination number of the bonded atoms increases. We show that this electronegativity scale can be successfully applied to predict the hardness of covalent and polar covalent crystals, which will be very useful for studying various chemical and physical properties of covalent materials.  相似文献   

3.
The variation of the indentation hardness of a high molecular weight poly(methyl methacrylate) (PMMA) subjected to CO2 and Ar at high pressure was measured in situ. The samples were subjected to gas exposure for 3 h at 40 °C before a conical indenter of an included angle at 105 °, with a fixed load of 0.237 kg, was applied for a loading time of 60 s. The data show that both CO2 and Ar reduce the hardness of PMMA to a comparable extent at low pressures. The hardness of PMMA subjected to Ar indicates a minimum at about 4 MPa and then increases. CO2 produced a monotone decreasing trend in hardness in the pressure range studied, and the glass‐transition temperature (Tg) was achieved at about 6.0 MPa. The change in hardness is attributed to plasticization of the polymer matrix that is more extensive for CO2. The relationship between the change in hardness for this PMMA subjected to high‐pressure CO2, the corresponding change in the Tg, and the associated swelling of the polymer is discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 3020–3028, 2001  相似文献   

4.
Reed JL 《Inorganic chemistry》2008,47(13):5591-5600
The structural origin of hard-soft behavior in atomic acids and bases has been explored using a simple orbital model. The Pearson principle of hard and soft acids and bases has been taken to be the defining statement about hard-soft behavior and as a definition of chemical hardness. There are a number of conditions that are imposed on any candidate structure and associated property by the Pearson principle, which have been exploited. The Pearson principle itself has been used to generate a thermodynamically based scale of relative hardness and softness for acids and bases (operational chemical hardness), and a modified Slater model has been used to discern the electronic origin of hard-soft behavior. Whereas chemical hardness is a chemical property of an acid or base and the operational chemical hardness is an experimental measure of it, the absolute hardness is a physical property of an atom or molecule. A critical examination of chemical hardness, which has been based on a more rigorous application of the Pearson principle and the availability of quantitative measures of chemical hardness, suggests that the origin of hard-soft behavior for both acids and bases resides in the relaxation of the electrons not undergoing transfer during the acid-base interaction. Furthermore, the results suggest that the absolute hardness should not be taken as synonymous with chemical hardness but that the relationship is somewhat more complex. Finally, this work provides additional groundwork for a better understanding of chemical hardness that will inform the understanding of hardness in molecules.  相似文献   

5.
This work provides a chemical approach to the relationship between structure and electronic behavior of the active surface of the WO(x)-ZrO(2) system as a function of W loads. This study shows that the electronic hardness (eta), the Lewis and Br?nsted acidity are functions of the local coordination and of the polymerization degree of the WO(x) domain. From theoretical calculations the observed behavior in the WO(x)-ZrO(2) system is explained: the Br?nsted acidity increases while the Lewis acidity decreases as the W centers go from tetrahedral to octahedral coordination and as the condensation degree of the WO(x) domain increases. Our results also indicate that not all the Br?nsted sites in the WO(x) domains are equally acid, and that as the W load increases the most acid sites decrease in number due to the condensation process. This finding also means a decrease on the average acidity per H site. Additionally, our results suggest that for surface densities in the 4-7 W nm(-2) range, mainly dimeric-tungstate species are present. A maximum in Br?nsted acidity was observed for a W surface density about 7 W nm(-2).  相似文献   

6.
This paper presents an analytical solution for periodical electroosmotic flows in two-dimensional uniform microchannel based on Poisson-Boltzmann equations for electric double layer (EDL) and Navier-Stokes equation for incompressible viscous fluid. Analytical results indicate that the velocity of periodical electroosmosis strongly depends on Reynolds number Re=omegah(2)/nu, as well as on EDL properties and applied electric field. Slip velocity of EDL decreases as the Reynolds number increases. Electroosmotic velocity outside the EDL decreases, and lag phase angle of velocity increases as distance away from the channel wall increases. A wavelike velocity profile across the channel is found. An asymptotic solution for low Reynolds number is given in this paper. Periodical electroosmosis with low Reynolds has same velocity amplitude and a pluglike velocity profile as that of steady electroosmosis. Based on Debye-Hückel approximation, this paper also obtains a solution of periodical electroosmosis applicable to cases where the thickness of EDL is of the same order as half of channel width.  相似文献   

7.
A mathematical model for the desolvation of solvent droplets has been used in conjunction with an existing code for simulation of ICP fundamental parameters. The combination has been used for the calculation of droplet histories and desolvation behavior along the central channel of an ICP. Calculations have been performed for droplets of various sizes and under a variety of ICP operating conditions. As central-channel gas flow rate increases, the point of complete desolvation of the droplet shifts upward in the plasma, away from the load coil. This relationship is fairly linear. As forward power increases, the point of complete desolvation moves down in the discharge, closer to the load coil. This is approximately an inverse relationship. Finally, simulation of behavior for a log-normal size distribution of a large number of droplets (108) shows that the number of surviving droplets falls sigmoidally with height above the load coil. For most nebulizer/spray chamber systems, the desolvation process is complete at a well-defined height in the plasma.  相似文献   

8.
This paper focuses on the quasi-static crushing characteristics and the corresponding energy absorption of nine different shapes of small-scale composite tubes. The idea is to choose suitable cross sections and geometrical shapes of the composite tubes which can yield progressive deformation and higher energy absorption; the finalized geometrical shapes will be studied further for the inner core of a sacrificial cladding structure against blast loading. All the composite tubes have been manufactured by a hand lay-up technique using E-glass fabric and polyester resin. Quasi-static axial crushing tests have been conducted to understand the deformation patterns and the corresponding load-deformation characteristics of each composite tube. The effect of dimensions (thickness to diameter ratio) on the specific energy absorption of each composite tube was studied. Finally, the quasi-static test parameters such as the peak crush load, mean crush load and the specific energy absorption of all these composite tubes were compared. From this unique study, it was found that the specific energy absorption of special geometrical shapes (hourglass type – A, hourglass type – B, conical circular type – X and conical circular type – Y) of the composite tubes is significantly higher than that of the standard and uniform profiles such as the square and the hexagonal cross sections.  相似文献   

9.
Gel permeation chromatography has been used to separate diepoxide–diamine oligomers, produced at a variety of stoichiometric ratios, into individual chemical species. Probability theory has been applied to calculate expressions for the amounts of each of these compounds and close agreement has been found with the experimental results. In conjunction with previous conclusions, this provides compelling evidence in favor of a purely random reaction mechanism, contrary to the inhomogeneous network-forming mechanism suggested by other workers. The effect of adding an inert diluent prior to reaction has been investigated and it is evident that the fraction of intramolecularly formed bonds increases as the concentration of polymer decreases.  相似文献   

10.
Nuclear stiffness, expressed as a hardness derivative, appears to be a good measure of the slope of global hardness. The authors analyze molecular states for which hardness has a maximum value. Maximum hardness principle (MHP) has been discussed. At the ground state hardness function does not obtain a maximum value versus spatial coordinates within a constant number of electrons (N), but is so within constant chemical potential (mu) constraint. The authors apply this feature to evaluate an energy third derivative (gamma). MHP has been analyzed via symmetry considerations of nuclear stiffness and nuclear reactivity. Nuclear stiffness has been also applied to study the hardness profile for a chemical reaction. In this case, the authors seek molecular states for which hardness is at a minimum. They have examined systems for which they have recently obtained regional chemical potentials [P. Ordon and A. Tachibana, J. Mol. Model. 11, 312 (2005); J. Chem. Sci. 117, 583 (2005)]. The transition state is found not to be the softest along the chemical reaction path. Nuclear stiffness reflects well the softest conformation of a molecule, which has been found independently along the intrinsic reaction coordinate profile. Electronic energy-density [A. Tachibana, J. Mol. Mod. 11, 301 (2005)] has been used to visualize the reactivity difference between the softest state and the transition state.  相似文献   

11.
对管线式介质阻挡放电中的甲醛脱除进行了实验研究, 测量了介质阻挡放电产生的OH (A2Σ→X 2Π, 0-0)自由基发射光谱. 研究了在一个大气压下不同放电峰值电压、放电频率、添加氩气和氧气时甲醛脱除率与OH自由基发射光谱强度的变化关系. 实验结果表明: 在氮气含甲醛体系中, 提高放电峰值电压、放电频率和增大氩气含量时, 甲醛脱除率随OH (A2Σ→X 2Π, 0-0)自由基发射光谱强度的增强而提高; 当在氮气含甲醛体系中增大氧气含量时, 甲醛脱除率随OH (A2Σ→X 2Π, 0-0)自由基发射光谱强度的减弱而降低. 在11.5 kV放电峰值电压和9 kHz放电频率下, 氮气含甲醛体系中甲醛脱除率达93.8%.  相似文献   

12.
A population balance is used to examine the effect of the shape of the initial drop-size distribution of an emulsion upon its short and long-time evolution in simple shear flow. Initial distributions that are monodisperse, multidisperse, lognormal, bimodal, multimodal, and step functions are considered. At short times, it is shown that the rate of coalescence decreases by up to 25% for step distributions and up to 75% for lognormal distributions as the width of the distribution increases. Bimodal, multidisperse and multimodal distributions show intermediate decreases in the rate of coalescence, between these two values, with increases in the distribution width. Furthermore, it is found that the initial rate of coalescence is strongly dependent upon the presence of large drops. As the number fraction of large droplets within the distribution increases, the rate of coalescence also increases. At long times, all distributions move toward an asymptotic distribution shape in which the frequency of drops decreases algebraically with drop diameter at small drop diameters, and decreases exponentially with drop diameter at large drop diameters. Though portions of each distribution showed the expected asymptotic scaling behavior at long times, each asymptotic distribution nevertheless retains 'fingerprints' of the respective initial distribution. Overall, the rate of coalescence for a system is bounded by the initial rate, which is a function of the initial distribution shape, and the asymptotic rate, which is dependent upon the long-time scaling behavior. Finally, it is shown that the resolution with which the drop-size distribution of an emulsion is experimentally measured can have a significant effect upon predicted rates of coalescence.  相似文献   

13.
14.
An innovative cooling and heating device has been successfully applied to an instrumented macrohardness testing machine in close collaboration with the company Zwick/Roell. The prototype allows the local time-dependent analysis of mechanical properties such as Martens hardness and indentation modulus, as well as fracture toughness and creep and relaxation behaviour at temperatures ranging from −100 °C to +100 °C. On the basis of load–indentation depth, load–time or indentation depth–time diagrams, the indentation behaviour as a function of test speed and/or temperature (which has rarely been done for polymers in the macro-range of loading) depending on matrix and materials composition (amorphous/semicrystalline thermoplastics, epoxy resins, micro- and nanocomposites) has been analysed. Martens-hardness, indentation modulus on the one hand and creep compliance and relaxation modulus on the other have been found to be strongly temperature dependent. Adequate methods of indentation fracture mechanics have been enhanced for polymers and applied to determine the fracture toughness of very different polymer-based materials.  相似文献   

15.
陈聪  李维仲 《化学学报》2009,67(9):883-887
利用分子动力学方法, 对不同浓度下的甘油水溶液进行了模拟, 分析了溶液的密度和氢键. 模拟得到的密度值与实验值吻合良好, 误差均在5%以内. 研究发现, 水的总受体个数与总供体个数的比值Ф与甘油的浓度cg存在线性关系. 随着溶液浓度的增大, Ф值不断下降, 而其下降值与溶液浓度存在线性关系, 即Ф(0)-Ф(cg)=bcg.  相似文献   

16.
选取聚丙烯(PP)和竹屑作为废塑料与生物质的典型代表,在热重分析仪和固定床台架上研究了塑料掺混比例对混合热解失重特性、动力学机理、产物分布行为等特性的影响,并分析了混合热解时生物质和废塑料间的协同作用机制。结果表明,随着塑料掺混比例的增加,混合热解终止温度由501℃降低至471℃,主要热解温度区间缩短;混合热解所需活化能呈现先减小后增大的趋势,在塑料掺混比例为0.25时取得最小值。通过对比实验数据和理论数据发现,生物质与废塑料混合热解具有很强的协同作用:该协同作用降低了生物质反应所需能量,增加了废塑料反应所需能量,降低了混合热解过程的总活化能;此外,协同作用促进大分子挥发分转化为小分子气体,促进芳烃、烷烃等烃类生成,抑制CO_2、苯酚、羧酸、呋喃和酮类等含氧物质生成。  相似文献   

17.
Emulsification of oil in water as affected by different parameters   总被引:2,自引:0,他引:2  
The aim of this investigation was to develop a basic understanding of the emulsification process by considering simple systems such as n-hexane, n-heptane, n-decane, and kerosene oil in water. The technique employed for the purpose was ultrasonification. The effect of ultrasonification time, chain length, viscosity, surface tension, oil content, and ionic strength of the media on the quality of emulsion has been studied. The emulsions were viewed through microscope to measure the number, size, and size distribution of droplets. Quantification of turbidity and viscosity was also used to characterize the emulsions. It has been found that the number and size of the droplets vary with the time of ultrasonification, contents of oils, molecular mass of the oils, and ionic strength of the media, and hence the quality of the emulsion is influenced by these parameters. The droplet size decreases, whereas the number of drops increases with the time of emulsification, approaching an optimum distribution at about 15 min of ultrasonification. Further, the increase in the molecular mass of the oil increases the size of the droplets and hence decreases the stability of the emulsion. The addition of electrolytes encourages coalescence and enhances the instability in the system. The results are in accord with the equations proposed by us.  相似文献   

18.
本工作对本体聚合的交替共聚物,聚[4-(4′-八甲基四硅氧基)二苯醚]作了重沉淀分级,再用粘度法、动态渗透压,光散射及GPC对级分和未分级试样作了分子量和分布宽度的测定。实验数据经多分散性改正后,得到该共聚物单分散的特性粘数-分子量关系式: [η]=2.33×10~(-3)M~(0.88)(毫升/克,25℃,四氢呋喃)该共聚物在四氢呋喃溶液中的第二维利系数A_2随分子量的增加而降低,依从A_2=3.60×10~(-2)的关系. 该共聚物在水中加热后放置几天会产生降解。紫外和红外光谱说明降解后共聚物的化学组成没有明显变化。  相似文献   

19.
Under investigation is the structure and process that gives rise to hard-soft behavior in simple anionic atomic bases. That for simple atomic bases the chemical hardness is expected to be the only extrinsic component of acid-base strength, has been substantiated in the current study. A thermochemically based operational scale of chemical hardness was used to identify the structure within anionic atomic bases that is responsible for chemical hardness. The base's responding electrons have been identified as the structure, and the relaxation that occurs during charge transfer has been identified as the process giving rise to hard-soft behavior. This is in contrast the commonly accepted explanations that attribute hard-soft behavior to varying degrees of electrostatic and covalent contributions to the acid-base interaction. The ability of the atomic ion's responding electrons to cause hard-soft behavior has been assessed by examining the correlation of the estimated relaxation energies of the responding electrons with the operational chemical hardness. It has been demonstrated that the responding electrons are able to give rise to hard-soft behavior in simple anionic bases.  相似文献   

20.
A probability model of zone overlapping in n-dimensional (n-D) separation systems has been developed. The probability that all sample components are separated is given as a function of the number of components, m, and of the peak capacity, nc, of the n-D system. Application to 1-D separations provides the same expression as that previously obtained with a more rigorous peak overlapping model, in the limit of large m and nc and of low saturation of the separation space. The major result is that the probability of total resolution of the sample decreases exponentially with the square of the number of sample components and with the reciprocal of the peak capacity, whatever the dimension of the separation system. In addition, a simple general relationship is obtained between this probability and the probability to separate one or a few components of interest from all other sample components. It is found that, for a given number of components and a given peak capacity, these probabilities slightly depend on the dimension of the separation system, which indicates that the peak capacity is not a fully universal index of characterization of the resolving power. The peak capacity required to separate all sample components at a given probability level increases with the square of the number of components. Accordingly, the individual peak capacity per dimension does not increase as fast as m when the dimension of the system exceeds 2.Dedicated to Professor Dr. h.c. mult. J.F.K. Huber on the occasion of his 70th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号