共查询到19条相似文献,搜索用时 67 毫秒
1.
2.
一种新的基于条纹投影的三维轮廓测量系统模型 总被引:1,自引:0,他引:1
提出一种新的光栅条纹投影轮廓测量术系统模型,新模型不要求测量系统满足光心连线平行于参考面、成像系统光轴垂直于参考面以及两光轴相交于参考面上等约束条件,只需投射至参考平面的正弦光栅条纹之间相互平行,简化了系统校准过程,有利于现场测量。得到的高度相位映射关系式中,待标定的系数与像点的坐标无关,不需要对每一个像点进行采样,能够减少系统标定所需的时间。实验表明:所提方法使投影装置和成像系统的位置校准过程简单,提高了系统标定的速度,且具有较高的测量精度,能够测量复杂面形的物体,增强了光栅投影三维测量系统的实用性。 相似文献
3.
4.
王雪敏李大海鄂可伟李萌阳秦双 《光学与光电技术》2016,(3):28-35
相位测量偏折术(PMD)是近几年在光学测量领域内普遍使用的一种非接触式的高精度测量方法,该方法需要CCD相机拍摄经被测光学元件反射的在显示屏上显示的条纹图,而CCD自身存在的镜头畸变会对测量精度产生一定的影响。为避免这一影响,提出了在梯形畸变和镜头畸变同时存在的情况下保留梯形形状而只校正镜头畸变的矢量Zernike多项式校正方法。该方法首先利用光轴与被拍摄面的交点及相机和被拍摄面的相对位置来求取与光轴垂直的辅助面上的标准图,然后利用矢量Zernike多项式拟合标准图与畸变图的坐标得到二者的映射关系,接着运用得到的映射关系对畸变图进行校正。实验结果表明:提出的畸变校正方法可以有效地降低测量误差,提高测量精度。 相似文献
5.
6.
7.
8.
正交光栅投影的相移轮廓术(PSP),可通过某一特定方向的相移(常利用相移调节因子来控制相移方向),获取两个相互正交的相位.但该方法对系统的非线性响应敏感,且目前尚未被深入讨论.为此,分析了系统的非线性响应对正交光栅相移轮廓术测量的影响,推导了带有非线性误差的相位表达式,并分析了两个方向相位相互串扰的原因.在此基础上,分... 相似文献
9.
在彩色相位测量轮廓术中,光电器件多个光通道之间的颜色串扰、强度响应不均等因素的影响,使得所获取的相移条纹图像失真,因此采用传统的相位技术求解相位会产生极大的相位误差。从彩色条纹图像的数学模型出发,分析了彩色成像器件所获取的红绿蓝三通道条纹图像特性,提出一种两步校正方法:第一步是基于三通道均值及标准差实现对各颜色通道图像强度的归一化处理;第二步是使用概率密度函数曲线搜索失真后的实际相移量,抑制相移量不准确对测量结果的影响。所提方法不需要对系统的耦合系数和相移偏移量进行预校正,可实现简便、快速的相位误差补偿。模拟及实验结果验证了该方法的有效性。 相似文献
10.
11.
When a digital projector is applied in high precision applications, the intrinsic parameters and distortion characteristics should be calibrated precisely. In this paper, a flexible full-field projector calibration method is proposed without any approximate distortion model. With planar homography theory and fringe projection technique, the projector distortion characteristic on each pixel can be measured independently and an initial distortion map is generated. The intrinsic parameters are calibrated afterwards. Then, the initial distortion map can be refined by correcting the non-perpendicularity between the optical axis and image plane. The original pattern to be projected is corrected with the refined distortion map. Thus, the calibrated projector can be regarded as an ideal projector conforming to the pinhole model. Experimental results show a nearly ideal residual map for the corrected projection pattern. In addition, the proposed calibration method is flexible without any sophisticated ancillary equipment or complicated procedure. 相似文献
12.
Fringe projection profilometry (FPP) is a powerful method for three-dimensional (3D) shape measurement. However, the measurement accuracy of the existing FPP is often hindered by the distortion of the lens used in FPP. In this paper, a simple and efficient method is presented to overcome this problem. First, the FPP system is calibrated as a stereovision system. Then, the camera lens distortion is eliminated by correcting the captured images. For the projector lens distortion, distorted fringe patterns are generated according to the lens distortion model. With these distorted fringe patterns, the projector can project undistorted fringe patterns, which means that the projector lens distortion is eliminated. Experimental results show that the proposed method can successfully eliminate the lens distortions of FPP and therefore improves its measurement accuracy. 相似文献
13.
This paper describes the analysis of phase distortion in phase-shifted fringe projection method. A phase distortion occurs when the phase shifting technique is applied to extract the phase values from projected fringe patterns in surface contouring. The phase distortion will induce measurement errors especially in the measurement of micro-components. The cause of such phase distortion is investigated and the influence of phase distortion on the measurement of micro-components is discussed. To eliminate the phase distortion, a continuous wavelet transform (CWT) is employed to extract phase values from object surface modulated fringe patterns. Principle of the proposed CWT phase extraction method is described and experiments are conducted to verify the proposed method. It is shown that by the use of CWT phase extraction method phase distortion induced in conventional phase-shifting technique can be completely eliminated. 相似文献
14.
An improved phase unwrapping method is proposed to reduce the projection fringes in three-dimensional (3D) surface measurement. Color fringe patterns are generated by encoding with sinusoidal fringe and stair phase fringe patterns in red and blue channels. These color fringe patterns are projected onto the tested objects and then captured by a color CCD camera. The recorded fringe patterns are separated into their RGB components. Two groups of four-step phase-shifting fringe patterns are obtained. One group of the stripes are four sinusoidal patterns, which are used to determine the wrapped phase. The other group of stripes are four sinusoidal patterns with the codeword embedded into stair phase, whose stair changes are perfectly aligned with the 2π discontinuities of sinusoidal fringe phase, which are used to determine the fringe order for the phase unwrapping. The experimental results are analyzed and compared with those of the method in Zheng and Da (2012. Opt Express 20(22):24139–24150). The results show that the proposed method needs only four fringe patterns while having less error. It can effectively reduce the number of projection fringes and improve the measuring speed. 相似文献
15.
Jesús Villa María AraizaDaniel Alaniz Rumen IvanovMarvin Ortiz 《Optics and Lasers in Engineering》2012,50(2):256-261
In this work we present a phase to (x,y,z)-coordinates transformation method for the calibration of a fringe projection profilometer. Our technique is divided in two parts: (1) phase to z transformation (for axial calibration) based on the typical polynomial fitting which uses a flat plane placed at several z positions to measure the phase of the projected fringes. (2) Phase to x and y transformation (for transverse calibration) based on the use of a crossed gratings pattern and a Fourier phase measurement method to determine x and y coordinates at several z positions. As will be shown the use of the crossed gratings pattern and the Fourier phase measurement method for transverse calibration is advantageous in several aspects: an unique image can give us x and y information at once. It provides x and y coordinates at each pixel in the image avoiding the use of interpolation methods. We present some experimental results and explain the viability of the proposed technique. 相似文献
16.
This study developed a 3-D measurement system based on flip-chip solder bump, used fringes with different modulation intensities in color channels, in order to produce color composite fringe with robustness, and proposed a multi-channel composite phase unwrapping algorithm, which uses fringe modulation weights of different channels to recombine the phase information for better measurement accuracy and stability. The experimental results showed that the average measurement accuracy is 0.43μm and the standard deviation is 1.38 µm. The results thus proved that the proposed 3-D measurement system is effective in measuring a plane with a height of 50 μm. In the flip-chip solder bump measuring experiment, different fringe modulation configurations were tested to overcome the problem of reflective coefficient between the flip-chip base board and the solder bump. The proposed system has a good measurement results and robust stability in the solder bump measurement, and can be used for the measurement of 3-D information for micron flip-chip solder bump application. 相似文献
17.
18.
An algorithm based on the principal component analysis (PCA) is proposed to measure transparent surface topography. First, many frames of random phase shifted fringe patterns are captured. Second, the first and second principal components are extracted from the phase shifted fringe patterns by PCA. Then, the phase is calculated from principal components. Finally, the correct global phase sign is determined by the clustering method considering local fringe phase monotonicity. The experimental results show that the proposed method can directly extract the three-dimensional (3D) shape, which does not need to determine the amount of phase shift, without precise phase shifter. It reduces the experimental hardware requirements and improves its adaptability in profilometry. 相似文献