首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-flame ionization detector (GC-FID) was developed for preconcentration and determination of some nitroaromatic compounds in wastewater samples. The effects of different variables on the extraction efficiency were studied simultaneously using experimental design. The variables of interest in the DLLME process were extraction and disperser solvent volumes, salt effect, sample volume, extraction temperature and extraction time. A Plackett-Burman design was performed for screening of variables in order to determine the significant variables affecting the extraction efficiency. Then, the significant factors were optimized by using a central composite design (CCD) and the response surface equations were derived. The optimum experimental conditions found from this statistical evaluation included: sample volume, 9 mL; extraction solvent (CCl4) volume, 20 μL; disperser solvent (methanol) volume, 0.75 mL; sodium chloride concentration, 3% (w/v); extraction temperature, 20 °C and extraction time, 2 min. Under the optimum conditions, the preconcentration factors were between 202 and 314. Limit of detections (LODs) ranged from 0.09 μg L−1 (for 2-nitrotoluene) to 0.5 μg L−1 (for 2,4-dinitrotoluene). Linear dynamic ranges (LDRs) of 0.5-300 and 1-400 μg L−1 were obtained for mononitrotoluenes (MNTs) and dinitrotoluenes (DNTs), respectively. Performance of the present method was evaluated for extraction and determination of nitroaromatic compounds in wastewater samples in the range of microgram per liter and satisfactory results were obtained (RSDs < 10.1%).  相似文献   

2.
A novel multi-templates molecularly imprinted polymer (MIP), using acidic pharmaceuticals mixture (ibuprofen (IBP), naproxen (NPX), ketoprofen (KEP), diclofenac (DFC), and clofibric acid (CA)) as the template, was prepared as solid-phase extraction (SPE) material for the quantitative enrichment of acidic pharmaceuticals in environmental samples and off-line coupled with liquid chromatography–mass spectrometry (LC/MS/MS). Washing solvent was optimized in terms of kind and volume for removing the matrix constituents nonspecifically adsorbed on the MIP. When 1 L of water sample spiked at 1 μg/L was loaded onto the cartridge, the binding capacity of the MIP cartridge were 48.7 μg/g for KEP, 60.7 μg/g for NPX, 52 μg/g for CA, 61.3 μg/g for DFC and 60.7 μg/g for IBP, respectively, which are higher than those of the commercial single template MIP in organic medium (e.g. toluene) reported in the literature. Recoveries of the five acidic pharmaceuticals extracted from 1 L of real water samples such as lake water and wastewater spiked at 1 μg/L were more than 95%. The recoveries of acidic pharmaceuticals extracted from 10-g sediment sample spiked at the 10 ng/g level were in the range of 77.4–90.6%. To demonstrate the potential of the MIP obtained, a comparison with commercial C18 SPE cartridge was performed. Molecularly imprinted solid-phase extraction (MISPE) cartridge showed higher recoveries than commercial C18 SPE cartridge for acidic pharmaceuticals. These results showed the suitability of the MISPE method for the selective extraction of a group of structurally related compounds such as acidic pharmaceuticals.  相似文献   

3.
Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) was evaluated for the simultaneous determination of five chlorophenols and seven haloanisoles in wines and cork stoppers. Parameters, such as the nature and volume of the extracting and disperser solvents, extraction time, salt addition, centrifugation time and sample volume or mass, affecting the DLLME were carefully optimized to extract and preconcentrate chlorophenols, in the form of their acetylated derivatives, and haloanisoles. In this extraction method, 1mL of acetone (disperser solvent) containing 30μL of carbon tetrachloride (extraction solvent) was rapidly injected by a syringe into 5mL of sample solution containing 200μL of acetic anhydride (derivatizing reagent) and 0.5mL of phosphate buffer solution, thereby forming a cloudy solution. After extraction, phase separation was performed by centrifugation, and a volume of 4μL of the sedimented phase was analyzed by GC-MS. The wine samples were directly used for the DLLME extraction (red wines required a 1:1 dilution with water). For cork samples, the target analytes were first extracted with pentane, the solvent was evaporated and the residue reconstituted with acetone before DLLME. The use of an internal standard (2,4-dibromoanisole) notably improved the repeatability of the procedure. Under the optimized conditions, detection limits ranged from 0.004 to 0.108ngmL(-1) in wine samples (24-220pgg(-1) in corks), depending on the compound and the sample analyzed. The enrichment factors for haloanisoles were in the 380-700-fold range.  相似文献   

4.
The present communication describes the preparation and evaluation of a molecularly imprinted polymer (MIP) as a solid-phase extraction (SPE) sorbent and simultaneous ethyl chloroformate (ECF) derivatization and pre-concentration by dispersive liquid–liquid microextraction (DLLME) for the analysis of t,t-muconic acid (t,t-MA) in urine samples using gas chromatography–mass spectrometry. The imprinting polymer was prepared using methacrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker, 2,2-azobisisobutyronitrile as the initiator and t,t-MA as a template molecule. The imprinted polymer was evaluated for its use as a SPE sorbent by comparing both imprinted and non-imprinted polymers in terms of the recovery of t,t-MA from urine samples. Molecular modelling studies were performed in order to estimate the binding energy and efficiency of the MIP complex formed between the monomer and the t,t-MA. Various factors that can affect the extraction efficiency of MIP, such as the loading, washing and eluting conditions, were optimized; other factors that can affect the derivatization and DLLME pre-concentration were also optimized. MIP in combination with ECF derivatization and DLLME pre-concentration for t,t-MA exhibits good linearity, ranging from 0.125 to 2 μg?mL?1 (R 2?=?0.9971), with limit of detection of 0.037 μg?mL?1 and limit of quantification of 0.109 μg?mL?1. Intra- and inter-day precision was found to be <6 %. The proposed method has been proven to be effective and sensitive for the selective pre-concentration and determination of t,t-MA in urine samples of cigarette smokers.
Figure
Graphical abstract for t,t-muconic acid analysis by using MISPE-DLLME followed by GC-MS analysis  相似文献   

5.
《Analytical letters》2012,45(15):2198-2209
Dispersive liquid-liquid microextraction (DLLME) is an attractive miniaturized technique that utilizes microliter volumes of extraction solvents. In this study, a DLLME technique was employed for the determination of four major trihalomethane (THM) compounds and analyzed using gas chromatography-electron capture detection. Optimization was conducted in terms of type and volume of disperser solvent, type and volume of extraction solvent, and addition of salt and extraction time. Optimized conditions employed methanol (0.25 mL) as the disperser solvent containing carbon disulfide (20 µL) as the extraction solvent. The linear range was 0.020–4.00 µg/L. Low limits of detection for the analytes were obtained in the range of 0.01 to 0.24 µg/L with enrichment factors ranging from 95–283. The relative recoveries of THMs from water samples at spiking level of 2 µg/L were in the range of 79.9 to 103.4%. This method was successfully applied to the determination of THM formation potential (THMFP) in river water samples. It was found that the concentration of THMFP in three Malaysian rivers were below the maximum permissible limits of World Health Organization (WHO).  相似文献   

6.
《Comptes Rendus Chimie》2017,20(5):585-591
Ketoprofen is a nonsteroidal anti-inflammatory drug widely consumed by humans as it possesses analgesic activities. A selective molecularly imprinted polymer (MIP) for ketoprofen was synthesized and applied as a solid-phase extraction sorbent. MIP was synthesized using 2-vinylpyridine, ethylene glycol dimethacrylate, 1,1′-azobis(cyclohexanecarbonitrile), toluene/acetonitrile (9:1, v/v), and ketoprofen as a functional monomer, cross-linker, initiator, porogenic mixture, and template, respectively. The polymerization was performed at 60 °C for 16 h, and thereafter the temperature was increased to 80 °C for 24 h to achieve a solid monolith polymer. Nonimprinted polymer was synthesized in a similar manner with the omission of ketoprofen. Characterization with thermogravimetric analysis and X-ray diffraction showed that the synthesized polymers were thermally stable and amorphous. Solid-phase extraction cartridges packed with MIP were used with high-performance liquid chromatography for quantitative analysis of ketoprofen in wastewater. The analytical method gave detection limits of 0.23, 0.17, and 0.09 μg/L in wastewater influent, effluent, and deionized water, respectively. The recovery for the wastewater influent and effluent spiked with 5 μg/L of ketoprofen was 68%, whereas 114% was obtained for deionized water. The concentrations of ketoprofen in the influent and effluent samples were in the ranges of 22.5–34.0 and 1.14–5.33 μg/L, respectively. Overall, the analytical method for the analysis of ketoprofen in wastewater was rapid, affordable, accurate, precise, sensitive, and selective.  相似文献   

7.
In this paper, solid‐phase extraction (SPE) in combination with dispersive liquid–liquid microextraction (DLLME) has been developed as a sample pretreatment method with high enrichment factors for the sensitive determination of amide herbicides in water samples. In SPE–DLLME, amide herbicides were adsorbed quantitatively from a large volume of aqueous samples (100 mL) onto a multiwalled carbon nanotube adsorbent (100 mg). After elution of the target compounds from the adsorbent with acetone, the DLLME technique was performed on the resulting solution. Finally, the analytes in the extraction solvent were determined by gas chromatography–mass spectrometry. Some important extraction parameters, such as flow rate of sample, breakthrough volume, sample pH, type and volume of the elution solvent, as well as salt addition, were studied and optimized in detail. Under optimum conditions, high enrichment factors ranging from 6593 to 7873 were achieved in less than 10 min. There was linearity over the range of 0.01–10 μg/L with relative standard deviations of 2.6–8.7%. The limits of detection ranged from 0.002 to 0.006 μg/L. The proposed method was used for the analysis of water samples, and satisfactory results were achieved.  相似文献   

8.
Xu Z  Song C  Hu Y  Li G 《Talanta》2011,85(1):97-103
A novel sulfamethazine molecularly imprinted polymer (MIP)-coated stir bar for sorptive extraction of eight sulfa drugs from biological samples was prepared. The MIP-coating was about 20 μm thickness with the relative standard deviation (RSD) of 6.7% (n = 10). It was characterized by scanning electron microscope, infrared spectrum, thermogravimetric analysis, and solvent-resistant investigation, respectively. The non-imprinted polymer (NIP)-coating was used for comparison. The adsorptive capacity and selectivity of MIP-coating were evaluated in detail. The MIP-coating showed higher adsorption capability and selectivity than the NIP-coating. The saturated adsorption amount of the MIP-coating was 4.6 times over that of the NIP-coating in toluene. Sulfamethazine could be detected after the MIP-coated stir bar sorptive extraction even at a low concentration of 0.2 μg/L. The MIP-coating also exhibited selective adsorption ability to analogues of the template. A method for the determination of eight sulfa drugs in biological samples by MIP coated stir bar sorptive extraction coupled with high performance liquid chromatography (HPLC) was developed. The extraction conditions, including extraction solvent, extraction time, desorption solvent, desorption time and stirring speed, were optimized. The linear ranges were 1.0-100 μg/L and 2.0-100 μg/L for eight sulfonamides, respectively. The detection limits were within the range of 0.20-0.72 μg/L. The method was successfully applied to simultaneous multi-residue analysis of eight sulfonamides in spiked pork, liver and chicken samples with the satisfactory recoveries.  相似文献   

9.
Dispersive liquid–liquid microextraction (DLLME) for extraction and preconcentration of phenoxyacetic acid herbicides in water samples is described. After adjusting the pH to 1.5, the sample was extracted in the presence of 10% w/v sodium chloride by injecting 1 mL acetone as disperser solvent containing 25 μL of chlorobenzene as extraction solvent. The effect of parameters, such as the nature and amount of extraction and disperser solvents, ionic strength of the sample, pH, temperature and extraction time were optimized. DLLME was followed by LC for the determination of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methyl phenoxyacetic acid. The method had good linearity and a wide linear dynamic range (0.5–750 μg L?1) with a detection limit of 0.16 μg L?1 for both the PAAs, making it suitable for their determination in water samples.  相似文献   

10.
In this paper, a novel molecularly imprinted polymer (MIP) coated stir bar with ractopamine as template by glass capillary filling with magnetic core as substrate was prepared reproducibly. The ractopamine MIP coating was homogeneous and porous with the average thickness of 20.6 μm. The extraction apparatus for the stir bar was improved to avoid coating loss. The MIP-coated stir bar showed better extraction capacity and good selectivity than that of non-imprinted polymer (NIP) coated stir bar to ractopamine and its analogues. The extraction capacities of ractopamine, isoxsuprine, clenbuterol and fenoterol for MIP-coated stir bar were 3.3, 3.1, 2.8 and 2.4 times as much as that of the NIP coated stir bar, respectively. The MIP-coated stir bars could be used at least 40 times without apparent damage and kept in dried air for 8 months without reduce of extraction ability. A method for the determination of β2-agonists in complex samples by MIP-coated stir bar sorptive extraction coupled with high-performance liquid chromatography (HPLC) was developed. The linear ranges were 0.5–40 μg/L for ractopamine and 1.0–40 μg/L for isoxsuprine and clenbuterol. The detection limits were within the range of 0.10–0.21 μg/L. The method was successfully applied to the analysis of β2-agonists in spiked pork, liver and feed samples with the recoveries of 83.7–92.3%, 80.5–90.2% and 73.6–86.2%, respectively. The RSDs was within 2.9–8.1%. The method is very suitable for the determination of trace β2-agonists in pork, liver and feed samples.  相似文献   

11.
We report on a new method for the selective extraction of the antibiotic sulfamethoxazole (SMO) in milk that is making use of a molecularly imprinted polymer (MIP) monolith as the sorbent. The monolith was synthesized in the tip of a micropipette using SMO as the template and a combination of acrylamide and 4-vinylpyridine as the co-functional monomers. The monolith was connected to syringes in different sizes and used for microextraction without any other treatment and showed high selectivity and enrichment ability for SMO. It was applied to the selective extraction and sensitive determination of SMO in milk. The linear range is from 5–600?μg?L?1, the correlation coefficient (r2) is 0.9984, and the detection limit (at S/N?=?3) is 1?μg?L?1. Recoveries range from 93.6 to 101.7?%, with relative standard deviations of <6.1?%.
Figure
A method for the selective extraction of sulfamethoxazole (SMO) in milk based on molecularly imprinted polymer (MIP) monolith as the sorbent was developed. The linear ranges were 5–600?μg/L for SMO in milk. High recoveries of 93.6?~?101.7?% from milk were obtained with relative standard deviations less than 6.1?%.  相似文献   

12.
In this study, an effective method of ultrasound-assisted ionic liquid based dispersive liquid–liquid microextraction (UA?IL?DLLME) coupled with HPLC was applied for extraction and determination of two antidepressant drugs: venlafaxine hydrochloride and amitriptyline hydrochloride from human plasma samples. Three ionic liquids were studied: 1-butyl-3-methyl imidazolium hexafluorophosphate, 1-hexyl-3- methyl imidazolium hexa-fluoro-phosphate, and 1-octyl-3-methyl imidazolium hexafluorophosphate [C8MIM][PF6]. Various factors affect the stages and efficiency of extraction, some of which are pH of sample solution, type and volume of ionic liquid, the time of ultrasonication, centrifuging time and rate, and the ionic strength of solution. In this research, optimum conditions were obtained as 55 μL of [C8MIM][PF6] selected as ionic liquid, pH 11, 2% NaCl, 4 min ultrasonication and 5 min centrifuging at 3500 rpm. Under the optimized conditions, the linearity was obtained in the range of 0.2 to 250 μg/L. The limits of detection were 0.5 μg/L for venlafaxine and 0.8 μg/L for amitriptyline. Pre-concentration factors were 1.3 × 103 for venlafaxine and 1.2 × 103 for amitriptyline. The UA?IL?DLLME method coupled with HPLC was successfully used for the determination of venlafaxine and amitriptyline spiked into the real samples of human plasma.  相似文献   

13.
Cunha SC  Fernandes JO 《Talanta》2010,83(1):117-125
A novel method combining dispersive liquid-liquid microextraction (DLLME) and heart-cutting multidimensional gas chromatography coupled to mass spectrometry was developed for the determination of free and total bisphenol A (BPA) and bisphenol B (BPB) in human urine samples. The DLLME procedure combines extraction, derivatization and concentration of the analytes into one step. Several important variables influencing the extraction efficiency and selectivity such as nature and volume of extractive and dispersive solvents as well as the amount of acetylating reagent were investigated. The temperature and time to hydrolyze BPA and BPB conjugates with a β-glucuronidase and sulfatase enzyme preparation were also studied. Under the optimized conditions good efficiency extraction (71-93%) and acceptable total DLLME yields (56-77%) were obtained for both analytes. Matrix-matched calibration curves were linear with correlation coefficients higher than 0.996 in the range level 0.1-5 μg/l, and the relative standard deviations (%RSD) were lower than 20% (n = 6). The limits of detection were 0.03 and 0.05 μg/l for BPA and BPB, respectively. The applicability of the proposed method for determining urinary free and total BPA and BPB was assessed by analyzing the human urine of a group of 20 volunteers. Free BPA was detected in 45% of the sample whereas total BPA was detected in 85% of the samples at concentrations ranging between 0.39 and 4.99 μg/l. BPB was detected in conjugated form in two samples.  相似文献   

14.
A new analytical method based on simultaneous derivatization and dispersive liquid–liquid microextraction (DLLME) followed by gas chromatography–mass spectrometry (GC–MS), for the determination of the allergenic compounds atranol and chloroatranol in perfumes, is presented. Derivatization of the target analytes by means of acetylation with anhydride acetic in carbonate buffer was carried out. Thereby volatility and detectability were increased for improved GC–MS sensitivity. In addition, extractability by DLLME was also enhanced due to a less polar character of the solutes. A liquid–liquid extraction was performed before DLLME to clean up the sample and to obtain an aqueous sample solution, free of the low polar matrix from the essential oils, as donor phase. Different parameters, such as the nature and volume of both the extraction and disperser solvents, the ionic strength of the aqueous donor phase or the effect of the derivatization reagent volume, were optimized. Under the selected conditions (injection of a mixture of 750 μL of acetone as disperser solvent, 100 μL of chloroform as extraction solvent and 100 μL of anhydride acetic as derivatization reagent) the figures of merit of the proposed method were evaluated. Limits of detection in the low ng mL−1 range were obtained. Matrix effect was observed in real perfume samples and thus, standard addition calibration is recommended.  相似文献   

15.
为实现小体积环境水样中酚类化合物的准确、快速、高灵敏测定,通过分散液液微萃取(DLLME)和荧光衍生化的结合,建立了高效液相色谱-荧光检测(HPLC-FLD)双酚A、壬基酚、辛基酚和对特辛基酚的分析方法。考察并优化了DLLME和衍生化条件,结果表明,最优的DLLME条件为萃取剂氯仿用量70μL,分散剂乙腈用量400μL,漩涡振荡3 min,高速离心2 min。以2-[2-(7 H-二苯并[a,g]咔唑-乙氧基)]-乙基氯甲酸酯(DBCEC-Cl)为柱前衍生试剂,在pH10.5的Na2CO3-NaHCO3缓冲液/乙腈溶液、50℃下衍生反应3 min得到稳定的衍生产物,于10min内实现了4种酚衍生物的分离。方法的检出限为0.9~1.6 ng/L,定量限为3.8~7.1 ng/L,具有良好的线性、精密度和回收率,与以往报道的方法相比具有一定的优势和实用性,可用于造纸厂废水、湖水、生活废水、自来水中4种酚类内分泌干扰物的测定。  相似文献   

16.
In this paper, a simple and cheap method for the simultaneous preconcentration and sensitive determination of three hexabromocyclododecane (HBCD) diastereomers (α-, β-, and γ-HBCD) in environmental water samples has been developed. It was based on solid phase extraction (SPE) and rapid resolution liquid chromatography-electrospray tandem mass spectrometry. Bamboo charcoal, one kind of cheap material, was investigated and used as SPE adsorbent for the enrichment and determination of HBCD diastereomers. Related important parameters affecting extraction efficiencies, including type and volume of eluant, amount of sorbent, sample pH, flow rate, and sample volume, were investigated and optimized in detail. Under the optimum conditions, experimental data exhibited excellent linear relationships between peak area and concentrations over the range 0.1-10?μg?L(-1). The limits of detection and precision were in the range of 0.005-0.015?μg?L(-1) and 4.59-7.47%, respectively. The proposed method has been successfully applied for the trace analysis of HBCD diastereomers in real-world environmental water samples.  相似文献   

17.
Solid‐phase extraction (SPE) in tandem with dispersive liquid–liquid microextraction (DLLME) has been developed for the determination of mononitrotoluenes (MNTs) in several aquatic samples using gas chromatography‐flame ionization (GC‐FID) detection system. In the hyphenated SPE‐DLLME, initially MNTs were extracted from a large volume of aqueous samples (100 mL) into a 500‐mg octadecyl silane (C18) sorbent. After the elution of analytes from the sorbent with acetonitrile, the obtained solution was put under the DLLME procedure, so that the extra preconcentration factors could be achieved. The parameters influencing the extraction efficiency such as breakthrough volume, type and volume of the elution solvent (disperser solvent) and extracting solvent, as well as the salt addition, were studied and optimized. The calibration curves were linear in the range of 0.5–500 μg/L and the limit of detection for all analytes was found to be 0.2 μg/L. The relative standard deviations (for 0.75 μg/L of MNTs) without internal standard varied from 2.0 to 6.4% (n=5). The relative recoveries of the well, river and sea water samples, spiked at the concentration level of 0.75 μg/L of the analytes, were in the range of 85–118%.  相似文献   

18.
We report on a method for the determination of twelve herbicides using solid–liquid–solid dispersive extraction (SLSDE), followed by dispersive liquid-liquid micro-extraction (DLLME) and quantitation by gas chromatography with triple quadrupole mass spectrometric detection. SLSDE was applied to the extraction of herbicides from tobacco samples using multi-walled carbon nanotubes (MWCNTs) as clean-up adsorbents. The effect of the quantity of MWCNTs on SLSDE, and of type and volume of extraction and disperser solvents and of salt effect on DLLME were optimized. Good linearity is obtained in the 5.0 - 500 μg kg?1 concentration range, with regression coefficients of >0.99. Intra-day and inter-day repeatability, expressed as relative standard deviations, are between 3 and 9 %. The recoveries in case of herbicide-spiked tobacco at concentration levels of 20.0, 50.0 and 100.0 g kg?1 ranged from 79 to 105 %, and LODs are between 1.5 and 6.1 μg kg?1. All the tobacco samples were found to contain butralin and pendimethalin at levels ranging from 15.8 to 500.0 μg kg?1.
Figure
Schematic diagram of herbicide extraction from tobacco samples by SLSDE-DLLME procedures. (a) sample solution containing herbicide and 10 mL acetonitril, (b) MWCNTs cleanup, (c) extract mixed with water, (d) addition of 100 μL of extraction solvent(chloroform) into mixed solution, (e) vortex mixer for 1 min, (f) phase separation after centrifugation. ? A method for analysis of 12 herbicides in tobacco samples was developed. ? MCNTs were used as sorbent, DLLME was further applied to purification and enrichment.. ? Butralin and pendimethalin were found in all tobacco samples.  相似文献   

19.
SPE joined with dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME‐SFO) as a novel technique combined with GC with electron‐capture detection has been developed as a preconcentration technique for the determination of organochlorine pesticides (OCPs) in water samples. Aqueous samples were loaded onto multiwalled carbon nanotubes as sorbent. After the elution of the desired compounds from the sorbent by using acetone, the DLLME‐SFO technique was performed on the obtained solution. Variables affecting the performance of both steps such as sample solution flow rate, breakthrough volume, type and volume of the elution, type and volume of extraction solvent and salt addition were studied and optimized. The new method provided an ultra enrichment factor (8280–28221) for nine OCPs. The calibration curves were linear in the range of 0.5–1000 ng/L, and the LODs ranged from 0.1–0.39 ng/L. The RSD, for 0.01 μg/L of OCPs, was in the range of 1.39–13.50% (n = 7). The recoveries of method in water samples were 70–113%.  相似文献   

20.
《Analytical letters》2012,45(18):2896-2913
Abstract

A highly selective and effective method for the purification and preconcentration of norfloxacin (NFX) in seawater samples was developed based on molecularly imprinted solid-phase extraction (MISPE). The molecularly imprinted polymer was synthesized by precipitation polymerization. Methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) were used as the functional monomer and crosslinker, respectively. The resulting molecularly imprinted polymer (MIP) showed high adsorption for NFX and was selective for its solid-phase extraction. An offline MISPE method followed by high performance liquid chromatography with diode array detection was established for the determination of NFX in seawater. The recoveries of spiked seawater samples using the MISPE columns were satisfactorily higher than 77.6%. The relative standard deviation was less than 5.60%, and the limit of detection was 0.027?μg L?1. Four seawater samples obtained from the Bohai Sea were analyzed, and NFX was found only at one location at a concentration of 0.280?μg L?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号