首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrafast infrared spectroscopy has been used to measure vibrational energy relaxation (VER) and reorientation (Tr) times for the high frequency CN stretches of potassium ferrocyanide and ferricyanide and the NO stretch of sodium nitroprusside (SNP) in several reverse micelle (RM) systems using cationic, anionic, and nonionic surfactants. The confinement effects on anion vibrational spectra and dynamics in aqueous RMs depend on the charge of the surfactant that is used to form the RMs. Spectra and VER dynamics of ferrocyanide are not significantly altered in the limited number of RMs in which it could be solubilized. The static spectra of ferricyanide suggest an environment that is most bulklike in anionic RMs and least bulklike in cationic RMs. The dynamics of ferricyanide are slower in cationic RMs and indistinguishable from the bulk in nonionic RMs. The VER dynamics and static spectra of SNP are indistinguishable from the bulk in anionic RMs, but much slower in cationic RMs. This suggests a strong surfactant-solute repulsion in the former and an attraction in the latter. Broad static spectra and probe frequency dependent dynamics are seen for SNP in nonionic RMs, indicating an inhomogeneous distribution of environments. Similar measurements were carried out for SNP in mixtures of water and a model compound containing only the hydrophilic portion of the nonionic surfactants in which RMs are not formed. The results closely resemble those observed for SNP in nonionic RMs and provide evidence that in the latter water penetrates the interface and hydrates the ethylene oxide groups before forming a water pool. The results are consistent with the explanation that Coulombic forces determine the anion location. The anions are repelled to the interior of the water pool, which has a bulklike environment in anionic RMs, and are attracted to the interface in cationic RMs, resulting in a strong interaction with the surfactant. The solute location in the nonionic RMs depends on the hydrophilic nature of the probe, with ferrocyanide and ferricyanide being more hydrophilic than SNP. These results and the dependence on surfactant charge are similar to those reported for azide.  相似文献   

2.
Abstract

This study investigated the effect of cationic, anionic (saturated and unsaturated), and nonionic surfactants on the formation, morphology, and surface properties of silica nanoparticles synthesized by the ammonium‐catalyzed hydrolysis of tetraethoxysilane in alcoholic media. Results indicate that at a relatively low surfactant concentration (1 × 10?3–1 × 10?6 M), cationic surfactants significantly affected the growth of silica particles as measured by dynamic light scattering and transmission electron microscopic analyses. In contrast, the anionic and nonionic surfactants showed relatively minor effects in the low concentration range. The magnitude of negative zeta potential was reduced for silica colloids that were synthesized in the presence of cationic surfactant because of charge neutralization. The presence of anionic surfactants only slightly increased the negative zeta potential while the nonionic surfactant showed no obvious effects. At high surfactant concentrations (>1 × 10?3 M), cationic and anionic surfactants both induced colloid aggregation, while the nonionic surfactant showed no effect on particle size. Raman spectroscopic analysis suggests that molecules of cationic surfactants adsorb on silica surfaces via head groups, aided by favorable electrostatic attraction, while molecules of anionic and nonionic surfactants adsorb via their hydrophobic tails.  相似文献   

3.
In the present study, we have performed molecular dynamics simulations to describe the microscopic behaviors of the anionic, nonionic, zwitterion, and gemini surfactants at oil/water interface. The abilities of reducing the interfacial tension and forming the stable interfacial film of the four surfactants have been investigated through evaluating interfacial thickness, interface formation energy and radial distribution function. The results show that the four kinds of surfactants can form in stable oil/water interface of monolayer, and the gemini surfactant can form the more stable monolayer. The results of the above three parameters demonstrate that the gemini surfactant has the best simulation effect in the four surfactants. From the calculated interfacial tension values, the gemini surfactant possess the more powerful ability of reducing the interfacial tension than others, so it is more suitable to be used as the surfactant for flooding. In addition, the effects of different electric field intensities on surfactants were calculated, through the radial distribution function of the hydrophilic group in the surfactant and the oxygen atom in the water. We have found that the adding of the periodic electric field can significantly affect the diffusion behavior of the molecules, and nonionic surfactant has stronger demulsification capability than others.  相似文献   

4.
The measurements of the advancing contact angle for water, glycerol, diiodomethane and aqueous solutions of Triton X-100 (TX-100), Triton X-165 (TX-165), sodium dodecyl sulfate (SDDS), sodium hexadecyl sulfonate (SHDS), cetyltrimethylammonium bromide (CTAB) and cetylpyridinium bromide (CPyB) on quartz surface were carried out. On the basis of the contact angles values obtained for water, glycerol and diiodomethane the values of the Lifshitz–van der Waals component and electron-acceptor and electron-donor parameters of the acid–base component of the surface free energy of quartz were determined. The determined components and parameters of the quartz surface free energy were used for interpretation of the influence of nonionic, anionic and cationic surfactants on the wettability of the quartz. From obtained results it was appeared that the wettability of quartz by nonionic and anionic surfactants practically does not depend on the surfactants concentration in the range corresponding to their unsaturated monolayer at water–air interface and that there is linear dependence between adhesional and surface tension of aqueous solution of these surfactants. This dependence for TX-100, TX-165, SDDS and SHDS can be expressed by lines which slopes are positive. This slope and components of quartz surface free energy indicate that the interaction between the water molecules and quartz surface might be stronger than those between the quartz and surfactants molecules. So, the surface excess of surfactants concentration at the quartz–water interface is probably negative, and the possibility of surfactants to adsorb at the quartz/water film–water interface is higher than at the quartz–water interface. This conclusion is confirmed by the values of the adhesion work of “pure” surfactants, aqueous solutions of surfactants and water to quartz surface. In the case of the cationic surfactants the relationship between adhesional and surface tension is more complicated than that for nonionic and anionic surfactants and indicates that the relationship between the adsorption of the cationic surfactant at water–air and quartz–water interface depends on the concentration of the surfactants in the bulk phase.  相似文献   

5.
Solutions of surfactant-polymer mixtures often exhibit different foaming properties, compared to the solutions of the individual components, due to the strong tendency for formation of polymer-surfactant complexes in the bulk and on the surface of the mixed solutions. A generally shared view in the literature is that electrostatic interactions govern the formation of these complexes, for example between anionic surfactants and cationic polymers. In this study we combine foam tests with model experiments to evaluate and explain the effect of several polymer-surfactant mixtures on the foaminess and foam stability of the respective solutions. Anionic, cationic, and nonionic surfactants (SDS, C(12)TAB, and C(12)EO(23)) were studied to clarify the role of surfactant charge. Highly hydrophilic cationic and nonionic polymers (polyvinylamine and polyvinylformamide, respectivey) were chosen to eliminate the (more trivial) effect of direct hydrophobic interactions between the surfactant tails and the hydrophobic regions on the polymer chains. Our experiments showed clearly that the presence of opposite charges is not a necessary condition for boosting the foaminess and foam stability in the surfactant-polymer mixtures studied. Clear foam boosting (synergistic) effects were observed in the mixtures of cationic surfactant and cationic polymer, cationic surfactant and nonionic polymer, and anionic surfactant and nonionic polymer. The mixtures of anionic surfactant and cationic polymer showed improved foam stability, however, the foaminess was strongly reduced, as compared to the surfactant solutions without polymer. No significant synergistic or antagonistic effects were observed for the mixture of nonionic surfactant (with low critical micelle concentration) and nonionic polymer. The results from the model experiments allowed us to explain the observed trends by the different adsorption dynamics and complex formation pattern in the systems studied.  相似文献   

6.
采用分子动力学模拟研究了以十二烷基苯磺酸钠(SDBS)为代表的阴离子型表面活性剂,以十二烷基三甲基溴化铵(DTAB)为代表的阳离子型表面活性剂,以壬基酚聚氧乙烯醚(NPE)为代表的非离子型表面活性剂,以十二烷基二甲基甜菜碱(Betaine)为代表的两性表面活性剂及空白实验.模拟了表面活性剂在油水界面上的行为,考察了表面活性剂分子与石油分子之间的径向分布函数(RDF)、石油分子在竖直方向的均方位移(MSD)、油水界面张力(IFT)、石油层与岩石层之间的相互作用能、石油层的相对浓度在竖直方向的分布及石油分子质心位置随模拟时间的变化关系等,讨论了不同表面活性剂的洗油性能.结果表明:(1)SDBS,NPE和Betaine分子初始状态下呈近似的规律排列,非极性端部分插入油相中,极性端延伸进入水相中;随后表面活性剂的极性端表现出聚集趋势,逐渐形成一个外部亲油内部亲水的一个胶束状粒子,粒子随模拟的进行逐渐融入到油层当中;DTAB从开始的近似规则排列逐渐变为无规排列,但是始终保持亲油端插入到油相中,亲水端位于油水界面上.(2)表面活性剂分子与石油分子之间的相互作用强弱顺序为Betaine≈DTABSDBSNPE.(3)由质心高度和动力过程中的图像截图分析,表面活性剂洗油效果的顺序为BetaineSDBSNPEDTABNone.模拟结果与实际的驱油结果一致,从分子层面上解释了不同表面活性剂洗油的规律.  相似文献   

7.
8.
We present molecular dynamics simulation results for solvation dynamics in the water pool of anionic-surfactant reverse micelles (RMs) of varying water content, w(0). The model RMs are designed to represent water/aerosol-OT/oil systems, where aerosol-OT is the common name for sodium bis(2-ethylhexyl)sulfosuccinate. To determine the effects of chromophore-headgroup interactions on solvation dynamics, we compare the results for charge localization in model ionic diatomic chromophores that differ only in charge sign. Electronic excitation in both cases is modeled as charge localization on one of the solute sites. We find dramatic differences in the solvation responses for anionic and cationic chromophores. Solvation dynamics for the cationic chromophore are considerably slower and more strongly w(0)-dependent than those for the anionic chromophore. Further analysis indicates that the difference in the responses can be ascribed in part to the different initial locations of the two chromophores relative to the surfactant interface. In addition, slow motion of the cationic chromophore relative to the interface is the main contributor to the longer-time decay of the solvation response to charge localization in this case.  相似文献   

9.
The miscibility of poly(D,L-lactide-co-glycolide) (PLG) with three amphiphilic molecules and the interaction of the PLG/surfactant mixtures with DNA at air/water interface are investigated by pi-A isotherms, Brewster angle microscopy (BAM) and atomic force microscopy (AFM) techniques. The pi-A isotherms of the PLG mixtures with cationic C(12)AzoC(6)PyBr, and C(12)AzoC(6)N(CH(3))(3)Br, are quite different from the pi-A isotherm of pure PLG on water subphase. In contrast to the case, the pi-A isotherm of PLG mixed with nonionic C(12)AzoC(6)OPy is almost identical to the pure PLG except some increasing of molecular area. Similar phenomena are observed on DNA subphase. The in situ BAM and ex situ AFM observations demonstrate that the dispersion of PLG at air/water interface becomes good when it mixes with the two cationic surfactants, whereas quite poor due to the phase separation when it mixes with the nonionic amphiphilic molecule. Based on these results we conclude that the cationic surfactants can affect the conformation change of PLG at air/water interface and figure a well miscibility with polymer whereas the nonionic amphiphilic molecule presents poor miscibility. In addition, the even mixing of the PLG and the cationic surfactants is favorable for the adsorption to DNA more effectively.  相似文献   

10.
混合表面活性剂微乳状液的形成和相行为研究进展   总被引:23,自引:0,他引:23  
讨论了单一表面活性剂,混合表面活性剂,助溶剂等对油/水微乳状液的形成和相行为的影响。对混合表面活性剂微乳状液的形成和相行为研究工作进行了归纳和总结,重点分析了正负离子表面活性剂微乳状液的相行为和表面活性剂微乳状液的相行为和表面活性剂效率,讨论了微乳状液形成的影响因素,并提出了这一研究领域可能的发展前景。  相似文献   

11.
Conductivity of water-in-oil microemulsions stabilized by mixed surfactants   总被引:3,自引:0,他引:3  
The electrical conductivity of D2O-in-n-heptane microemulsions stabilized by cationic/nonionic surfactant mixtures was studied as a function of D2O content, surfactant concentration, and surfactant mixture composition. The surfactants employed were cationic di-n-didodecyldimethylammonium bromide, DDAB, nonionic poly(oxyethylene) monododecyl ethers, C12EJ, with J=3-8 and 23, nonionic polymeric surfactants of the type PEO-PPO-PEO (Pluronic), and the reverse structure analogues (Pluronic R). Qualitative structural information was drawn from a comparison between the measured conductivity and that predicted by the charge fluctuation model for spherical droplets. The conductivity versus water content curves were found to be typical for water-in-oil systems composed of spherical droplets. From the effect of blending nonionic surfactant with DDAB on the measured conductivities, it was concluded that microemulsion conductivity is independent of the concentration of cationic surfactant (DDAB). This finding agrees well with theoretical microemulsion conductivity models.  相似文献   

12.
The effects of monomeric surfactants on the hydride transfer from (one electron oxidation of) methylene blue leucodye to (by) 2,5-dihydroxy-1,4-benzoquinone in aqueous solution were investigated at 25°C using a stopped-flow spectrometer. The results indicated that cationic, anionic, and zwitterionic surfactants inhibited the reaction while nonionic surfactant showed no appreciable effect on the reaction. These observations are rationalized by electrostatic factors between surfactant monomer (or micelle) and reactant with charge or the charge transfer complex of the hydride transfer reaction. Above the cmc, the effects are treated quantitatively using a kinetic model.  相似文献   

13.
Surfactants of practical interest are invariably mixtures of different types. In this study, mixtures of sugar-based n-dodecyl-beta-D-maltoside with cationic dodecyltrimethylammonium bromide, anionic sodium dodecylsulfate, and nonionic pentaethyleneglycol monododecyl ether in solution, with and without supporting electrolyte, have been studied using surface tension and fluorescence spectroscopic techniques. Interaction parameters and mole fraction of components in mixed micelles were calculated using regular solution theory. The magnitude of interactions between n-dodecyl-beta-D-maltoside and other surfactants followed the order anionic/nonionic > cationic/nonionic > nonionic/nonionic mixtures. Since all surfactants have the same hydrophobic groups, strengths of interactions are attributed to the structures of hydrophilic headgroups. Electrolyte reduced synergism between n-dodecyl-beta-D-maltoside and ionic surfactant due to charge neutralization. Industrial sugar-based surfactant, dodecyl polyglucoside, yielded results similar to that with dodecyl maltoside, implying that tested commercial alkyl polyglucosides are similar to the pure laboratory samples in synergistic interactions with other surfactants. Fluorescence study not only supported the cmc results using tensiometry, but showed that interfaces of all the above mixed micelle/solution interfaces are mildly hydrophobic. Based on these results, an attempt is made to discover the nature of interactions to be a combination of intermolecular potential energies and free energy due to packing of surfactant molecules in micelles.  相似文献   

14.
The dynamics of the excited-state intramolecular proton-transfer (ESIPT) reaction of 2-(2'-furyl)-3-hydroxychromone (FHC) was studied in micelles by time-resolved fluorescence. The proton-transfer dynamics of FHC was found to be sensitive to the hydration and charge of the micelles, demonstrated through a decrease of the ESIPT rate constant (k(PT)) in the sequence cationic → nonionic → anionic micelles. A remarkably slow ESIPT with a time constant (τ(PT)) of ~100 ps was observed in the anionic sodium dodecyl sulfate and sodium tetradecyl sulfate micelles, whereas it was quite fast (τ(PT) ≈ 15 ps) in the cationic cetyltrimethylammonium bromide and tetradecyltrimethylammonium bromide micelles. In the nonionic micelles of Brij-78, Brij-58, Tween-80, and Tween-20, ESIPT occurred with time constants (τ(PT) ≈ 35-65 ps) intermediate between those of the cationic and anionic micelles. The slower ESIPT dynamics in the anionic micelles than the cationic micelles is attributed to a relatively stronger hydration of the negatively charged headgroups of the former than the positively charged headgroups of the latter, which significantly weakens the intramolecular hydrogen bond of FHC in the Stern layer of the anionic micelles compared to the latter. In addition, electrostatic attraction between the positively charged -N(CH(3))(3)(+) headgroups and the negatively charged 4-carbonyl moiety of FHC effectively screens the intramolecular hydrogen bond from the perturbation of water molecules in the micelle-water interface of the cationic micelles, whereas in the anionic micelles, this screening of the intramolecular hydrogen bond is much less efficient due to an electrostatic repulsion between its negatively charged -OSO(3)(-) headgroups and the 4-carbonyl moiety. As for the nonionic micelles, a moderate level of hydration, and the absence of any charged headgroups, causes an ESIPT dynamics faster than that of the anionic but slower than that of the cationic micelles. Furthermore, the ESIPT rate decreased with a decrease of the hydrophobic chain length of the surfactants due to the stronger hydration of the micelles of shorter chain surfactants than those of longer chain surfactants, arising from a less compact packing of the former surfactants compared to the latter surfactants.  相似文献   

15.
It is well known that the antioxidant activity of some species in homogenous solutions may not be the same as that in heterogeneous media. This environment dependence is the reason for investigating ascorbic acid antioxidant activity in surfactant solutions. In our study we have investigated the kinetics of atmospheric oxidation and electrochemical oxidation of ascorbic acid in aqueous solutions of the four surfactants: SDS, AOT (anionic), TRITON-100 (nonionic), and CTAB (cationic). For each surfactant the concentrations below and above CMC were investigated. As expected, a general trend in the atmospheric oxidation rate changes in the following manner: the micellar solution of nonionic surfactant shows a faster oxidation rate than that of the anionic surfactant, and the cationic surfactant an even higher one. The more subtle effects were observed with each surfactant concentration change. The influence of the surfactants on the electrochemical behavior of ascorbic acid was also studied. A general conclusion emerging from our investigation is that surfactants shift the ascorbic acid oxidation potential and change the peak current value. This phenomenon is due mainly to the surfactant film formed at the electrode/solution interface.  相似文献   

16.
Various experimental methods were used to investigate interaction between polymer and anionic/nonionic surfactants and mechanisms of enhanced oil recovery by anionic/nonionic surfactants in the present paper. The complex surfactant molecules are adsorbed in the mixed micelles or aggregates formed by the hydrophobic association of hydrophobic groups of polymers, making the surfactant molecules at oil-water interface reduce and the value of interfacial tension between oil and water increase. A dense spatial network structure is formed by the interaction between the mixed aggregates and hydrophobic groups of the polymer molecular chains, making the hydrodynamic volume of the aggregates and the viscosity of the polymer solution increase. Because of the formation of the mixed adsorption layer at oil and water interface by synergistic effect, ultra-low interfacial tension (~2.0?×?10?3 mN/m) can be achieved between the novel surfactant system and the oil samples in this paper. Because of hydrophobic interaction, wettability alteration of oil-wet surface was induced by the adsorption of the surfactant system on the solid surface. Moreover, the studied surfactant system had a certain degree of spontaneous emulsification ability (D50?=?25.04?µm) and was well emulsified with crude oil after the mechanical oscillation (D50?=?4.27?µm).  相似文献   

17.
共沉法制备PbTiO3微粉控制晶粒大小方法的研究   总被引:1,自引:0,他引:1  
研究了超声分散作用和共沉物陈化条件对共沉法制备PbTiO3微粉晶粒大小的影响,结果表明,在超声分散作用下进行共沉反应可使晶粒明显减小,并可降低PbTiO3的晶化温度,共沉物在不同类型的表面活性剂水溶液中陈化效果不同,非离子型表面活性剂及其混合物可使陈化物粒子及PbTiO3晶粒明显减小。  相似文献   

18.
The interaction of dye and surfactants was studied by their spectroscopic and surface properties. Large bathochromic shift (15 nm) in the absorption spectrum was found for aminoindophenol dye at high pH in cationic surfactant, while there is no significant shift in anionic, zwitterionic and nonionic surfactant solutions. The static and dynamic surface properties show there is strong interaction in mixture of cationic surfactant and aminoindophenol dye. Interaction of dye and surfactants on surface and in solution is correlated to the intensity of dye deposition on fiber. The charge complex formation between cationic surfactant and aminoindophenolic dye delays the dye diffusion into keratin fiber. The stronger is the dye/surfactant interaction, the lower dye deposition and diffusion become.  相似文献   

19.
The rate of hydrolysis of phenyl and p-nitrophenyl perfluorooctanoate (2a and 2b) was measured in water and in the presence of different cationic (dodecyltrimethylammonium chloride, dodecyltrimethylammonium bromide, cetyltrimethylammonium bromide), anionic (sodium dodecyl sulfate (SDS) and perfluorooctanoate (PFO)) and neutral (Brij-35) surfactants. In water solution, the formation of phenol from 2a and p-nitro phenol from 2b takes place through two kinetic processes, both of which are much slower than the expected rate of hydrolysis for the monomeric compounds in water. The two kinetic processes are attributed to a coupling of the rates of hydrolysis and aggregation of the substrates. In the presence of charged surfactants at concentrations below the respective critical micellar concentration (cmc), two relaxation times are also observed. These are of the same order of magnitude as the substrates alone in the case of SDS, but faster for the cationic surfactants. At some concentration above the cmc, all the surfactants, except for PFO, showed a clean pseudo-first-order behavior attributed to the hydrolysis of the substrate incorporated into the micellar phase. In cationic micelles, the rates for 2a are slower and those for 2b are faster than the value expected for the monomer in water. The difference in behavior is attributed to the location of the substrates in the micellar phase and to the charge distribution in the transition state of the reactions. It is shown that the reactions in the micellar phase are catalyzed by the buffer PO4H(2-)/PO4H2(-). The reactions in SDS micelles are faster than those in water but slower than the estimated value for the monomer in water. The rate of the reactions in the presence of nonionic surfactant has values between those in cationic and anionic surfactants, that is, the rates are k(cationic) > k(nonionic) > k(anionic.) The behavior of 2a and 2b in water and in micellar solutions indicates that the substrates form aggregates in water at a rate that competes with the rate of hydrolysis.  相似文献   

20.
Effective plastic film deinking could permit the reuse of recycled polymer to produce clear film, reduce solid waste for landfills, reduce raw material demand for polymer production, and aid process economics. In this study, the deinking of a commercial polyethylene film printed with water-based ink was studied using surfactants in the presence of hardness ions (calcium ions) at various pH levels. The electrostatic properties of ink particles in a washing bath were also investigated. Synthetic anionic surfactant or fatty acid soap in the presence of calcium ions at alkaline pH levels was found to be nearly as effective at deinking as cationic, nonionic, or amphoteric surfactants alone. However, adding calcium ions decreases the deinking effectiveness of cationic, nonionic, and amphoteric surfactants. Increasing the length of the ionic surfactant hydrophobe enhances deinking. Zeta potential measurements showed that water-based ink particles in water reach the point of zero charge (PZC) at a pH of about 3.6, above which ink particles are negatively charged, so cationic surfactant tends to adsorb better on the ink than anionic surfactant above the PZC in the absence of calcium. As the cationic surfactant concentration is varied between 0.005 and 25 mM, the zeta potential of the ink particles reverses from negative to positive owing to adsorption of cationic surfactant. For anionic surfactants, added calcium probably forms a bridge between the negatively charged ink and the negatively charged surfactant head groups, which synergizes adsorption of the surfactant and aids deinking. In contrast, calcium competes for adsorption sites with cationic and nonionic surfactants, which inhibits deinking. All the surfactants studied here disperse ink particles effectively in the washing bath above pH 3 except for the ethoxylated amine surfactant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号