首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+ (aq) + 1·Na+ (nb) ⇔ 1·M+ (nb) + Na+ (aq) taking place in the two-phase water–nitrobenzene system (M+ = Li+, H3O+, NH4 + {\rm NH}_{4}^{ + } , Ag+, K+, Rb+, Tl+, Cs+; 1 = barium ionophore I; aq = aqueous phase, nb = nitrobenzene phase) were determined. Furthermore, the stability constants of the 1·M+ complexes in water-saturated nitrobenzene were calculated; they were found to increase in the series of Cs+ < Rb+ < NH4 + {\rm NH}_{4}^{ + } , K+ < H3O+ < Na+ < Ag+, Tl+ < Li+.  相似文献   

2.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+ (aq) + NaL+ (nb) ⇔ ML+ (nb) + Na+ (aq) taking place in the two-phase water–nitrobenzene system (M= H3O+, \textNH4+ {\text{NH}}_{4}{}^{+} , Ag+, Tl+; L = hexaethyl p-tert-butylcalix[6]arene hexaacetate; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Furthermore, the stability constants of the ML+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the following order: \textAg +   <  NH4 +   <  \textH 3 \textO +   <  \textNa +   <  \textTl + . {\text{Ag}}^{ + } \, < \,\hbox{NH}_{4}{}^{ + } \, < \,{\text{H}}_{ 3} {\text{O}}^{ + } \, < \,{\text{Na}}^{ + } \, < \,{\text{Tl}}^{ + }.  相似文献   

3.
From extraction experiments and γ-activity measurements, the extraction constants corresponding to the general equilibrium M+(aq) + 1·Cs+(nb) \rightleftarrows \rightleftarrows 1·M+(nb) + Cs+(aq) taking part in the two-phase water–nitrobenzene system (1 = hexaarylbenzene-based receptor; M+ = H3O+, NH4 +, Ag+, K+, Rb+, Tl+; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Furthermore, the stability constants of the ML+ complex species in nitrobenzene saturated with water were calculated; they were found to increase in the series of Rb+ < K+ < Ag+, Tl+ < H3O+, NH4 +.  相似文献   

4.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the equilibrium M +(aq) + 1 · Na+ (nb) ⇄ 1 · M + (nb) + Na+ (aq) taking place in the two-phase water-nitrobenzene system (M + = Li+, H3O+, NH4 +, Ag+, K+, Rb+, Tl+, Cs+; 1 = tetraphenyl p-tert-butylcalix[4]arene tetraketone; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Moreover, the stability constants of the 1 · M + complexes in water saturated nitrobenzene were calculated; they were found to increase in the order Cs+ < Rb+ < Tl+ < K+ < NH4 + < Ag+ < H3O+ < Li+. Correspondence: Emanuel Makrlík, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Republic.  相似文献   

5.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+(aq) + 1·Cs+(nb) ? M+(nb) + Cs+(aq) taking place in the two-phase water–nitrobenzene system (M+ = Li+, Na+, H+, NH4 +, Ag+, K+, Rb+, Tl+; 1 = dibenzo-30-crown-10; aq = aqueous phase, nb = nitrobenzene phase) were determined. Furthermore, the stability constants of the 1·M+ complexes in water-saturated nitrobenzene were calculated; they were found to increase in the series of Cs+ < H+, Ag+ < NH4 + < Na+ < Rb+ < Li+ < K+, Tl+.  相似文献   

6.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+ (aq) + CsL+ (nb) ? ML+ (nb) + Cs+ (aq) taking place in the two–phase water–nitrobenzene system (M+ = K+, Rb+, $ {\text{NH}}_{4}^{ + } $ , Ag+, Tl+; L = calix[4]arene-bis(t-octylbenzo-18-crown-6); aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Furthermore, the stability constants of the ML+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the following cation order: $ {\text{NH}}_{4}^{ + } $  < K+ < Ag+ < Rb+ < Tl+.  相似文献   

7.
Summary From extraction experiments and g-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+(aq) + CsL+(nb) ? ML+(nb) + Cs+(aq) taking place in the two-phase water-nitrobenzene system (M+ = NH, K+, Rb+, Tl+; L = dibenzo-21-crown-7; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Further, the stability constants of the ML+ complexes in water saturated nitrobenzene were calculated; they were found to increase in the order Cs+<K+ = Rb+?NH<Tl+.  相似文献   

8.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+ (aq) + 1·Na+ (org) $ \Leftrightarrow $ 1·M+ (org) + Na+ (aq) taking place in the two-phase water–phenyltrifluoromethyl sulfone (abbrev. FS 13) system (M+ = Li+, H3O+, NH4 +, Ag+, Tl+, K+, Rb+, Cs+; 1 = benzo-18-crown-6; aq = aqueous phase, org = FS 13 phase) were evaluated. Further, the stability constants of the 1·M+ complexes in FS 13 saturated with water were calculated; they were found to increase in the series of $ {\text{Cs}}^{ + } \, < \,{\text{Rb}}^{ + } \, < \,{\text{H}}_{ 3} {\text{O}}^{ + } \, < \,{\text{Ag}}^{ + } \, < \,{\text{Li}}^{ + } \, < \,{\text{NH}}_{4}^{ + } \, < \,{\text{K}}^{ + } \, < \,{\text{Tl}}^{ + } $ .  相似文献   

9.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+(aq)?+?1·Cs+(nb) ? 1·M+(nb)?+?Cs+(aq) taking place in the two-phase water–nitrobenzene system (M+?=?Li+, Na+, K+, Rb+, H3O+, NH4 +, Tl+; 1?=?beauvericin; aq?=?aqueous phase, nb?=?nitrobenzene phase) were determined. Moreover, the stability constants of the 1·M+ complexes in water-saturated nitrobenzene were calculated; they were found to increase in the series of Rb+?<?Na+, H3O+?<?Tl+?<?NH 4 +? <?K+?<?Li+.  相似文献   

10.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+(aq)+NaL+(nb)⇔ML+(nb)+Na+(aq) taking place in the two-phase water-nitrobenzene system [M+=Li+, K+, Rb+, Cs+; L = p-tert-butylcalix[4]arene-tetrakis (N, N-dimethylthioacetamide); aq = aqueous phase, nb = nitrobenzene phase] were evaluated. Furthermore, the stability constants of the ML+ complexes in water saturated nitrobenzene were calculated; they were found to increase in the cation order Cs+<Rb+<K+<Li+<Na+.  相似文献   

11.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+(aq)+CsL+(nb)⇔ML+(nb)+Cs+(aq) taking place in the two-phase water-nitrobenzene system (M+ = Li+, Na+, K+, Rb+; L = hexaethyl p-tert-butylcalix[6]arene hexaacetate; aq = aqueous phase, nb = nitrobenzene phase) were determined. Moreover, the stability constants of the ML+ complexes in water saturated nitrobenzene were calculated; they were found to increase in the cation order Rb+<Cs+<K+<Na+<Li+.  相似文献   

12.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+ (aq) + Cs+ (nb) ? M+ (nb) + Cs+ (aq) taking place in the two-phase water–nitrobenzene system (M+ = Ag+, K+, Rb+, Tl+; 1 = 1,3-alternate-25,27-bis(1-octyloxy)calix[4]arene-crown-6; aq is aqueous phase, nb is nitrobenzene phase) were determined. Moreover, the stability constants of the M+ complexes in water-saturated nitrobenzene were calculated; they were found to increase in the series of K+ < Rb+ < Ag+ < Tl+.  相似文献   

13.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+(aq)+NaL+(nb)⇄ML+(nb)+Na+(aq) taking place in the two-phase water-nitrobenzene system (M+=Li+, K+, Rb+, Cs+; L=dibenzo-24-crown-8; aq=aqueous phase, nb=nitrobenzene phase) were evaluated. Further, the stability constants of the ML+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the Cs+Rb+L+Na+ order.  相似文献   

14.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+(aq)+NaL+(nb)⇄ML+(nb)+Na+(aq) taking place in the two-phase water-nitrobenzene system (M+=Li+, K+, Rb+, Cs+; L=18-crown-6; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. The stability constants of the ML+ complexes in nitrobenzene saturated with water were calculated; they are found to increase in the cation order Cs+Li+Na+Rb+K+. Further, the individual extraction constants for the NaL+, KL+, RbL+ and CsL+ complex species in the wate-nitrobenzene system were determined; their values increase in the series Na+Rb+Cs+K+.  相似文献   

15.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+(aq)+NaL+(nb)⇔ML+(nb)+Na+(aq) taking place in the two-phase water-nitrobenzene system (M+ = H+, NH4+, Ag+, Tl+; L = tetramethyl p-tert-butylcalix[4]arene tetraketone; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Moreover, the stability constants of the ML+ complexes in water saturated nitrobenzene were calculated; they were found to increase in the order Tl+<NH4+<Ag+ <H+ <Na+.  相似文献   

16.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+(aq)+NaL+(nb)⇔ML+(nb)+Na+(aq) taking place in the two-phase water-nitrobenzene system (M+ = Li+, H3O+, NH4+, Ag+; L = hexaethyl calix[6]arene hexaacetate; aq = aqueous phase, nb = nitrobenzene phase) were determined. Furthermore, the stability constants of the ML+ complexes in water saturated nitrobenzene were calculated; they were found to increase in the cation order H3O+<NH4+<Li+<Ag+.  相似文献   

17.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium \textM 2+ ( \textaq ) + \textSr 2+ ( \textorg ) ? \textM 2+ ( \textorg ) + \text Sr 2+ ( \textaq ) {\text{M}}^{ 2+ } \left( {\text{aq}} \right) + {\text{Sr}}^{ 2+ } \left( {\text{org}} \right) \Leftrightarrow {\text{M}}^{ 2+ } \left( {\text{org}} \right) + {\text{ Sr}}^{ 2+ } \left( {\text{aq}} \right) taking place in the two-phase water–phenyltrifluoromethyl sulfone (abbrev. FS 13) system (M2+ = Mg2+, Ca2+, Ba2+, Cu2+, Zn2+, Cd2+, Pb2+, \textUO22 + {\text{UO}}_{2}^{2 + } , Mn2+, Fe2+, Co2+, Ni2+; aq = aqueous phase, org = FS 13 phase) were evaluated. Furthermore, the individual extraction constants of the M2+ cations in this two-phase system were calculated; they were found to increase in the series of Mg2+, \textUO22 + {\text{UO}}_{2}^{2 + }  < Ca2+, Co2+ < Cd2+, Ni2+ < Zn2+ < Cu2+, Mn2+, Fe2+ < Pb2+ < Ba2+.  相似文献   

18.
From extraction experiments and γ-activity measurements, the exchange extraction constant corresponding to the equilibrium Ag+(aq) + 1⋅Cs+(nb) ⇆ 1⋅Ag+(nb) + Cs+(aq) taking part in the two-phase water–nitrobenzene system (where 1 = hexaarylbenzene-based receptor; aq = aqueous phase, nb = nitrobenzene phase) was evaluated to be log 10 K ex(Ag+, 1⋅Cs+) = −1.0±0.1. Further, the stability constant of the hexaarylbenzene-based receptor⋅Ag+ complex (abbreviation 1⋅Ag+) in nitrobenzene saturated with water, was calculated at a temperature of 25 °C: log 10 β nb(1⋅Ag+) = 5.5±0.2. By using quantum mechanical DFT calculations, the most probable structure of the 1⋅Ag+ complex species was solved. In this complex having C3 symmetry, the cation Ag+ synergistically interacts with the polar ethereal oxygen fence and with the central hydrophobic benzene ring via cation–π interaction.  相似文献   

19.
The extraction of micro amounts of cesium by nitrobenzene solutions of sodium, potassium and rubidium dicarbollylcobaltates (M+B;M+=Na+,K+,Rb+) has been investigated in the presence of 2,3-naphtho-15-crown-5 (N15C5, L). The equilibrium data were explained by assuming that ML+ and ML2+ complexes (M+=Na+,K+,Rb+, Cs+; L=N15C5) were present in the organic phase. The stability constants of the complex species ML+ and ML2+ have been determined in nitrobenzene saturated with water. It was found that the stability of the complex cation ML+ (where M+=Na+,K+,Rb+, Cs+; L=N15C5) in water-saturated nitrobenzene solutions increases along the series Cs+<Rb+<K+<Na+, whereas that of the species ML2+ in the same medium increases in the order Cs+<Rb+<Na+<K+.  相似文献   

20.
From extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium \textCs + ( \textaq ) + \textA - ( \textaq ) + 1( \textnb )\underset \rightleftharpoons 1·\textCs + ( \textnb ) + \textA - ( \textnb ) {\text{Cs}}^{ + } \left( {\text{aq}} \right) + {\text{A}}^{ - } \left( {\text{aq}} \right) + {\mathbf{1}}\left( {\text{nb}} \right)\underset {} \rightleftharpoons {\mathbf{1}}\cdot{\text{Cs}}^{ + } \left( {\text{nb}} \right) + {\text{A}}^{ - } \left( {\text{nb}} \right) taking place in the two-phase water-nitrobenzene system (A = picrate, 1 = dibenzo-21-crown-7; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log K ex (1·Cs+, A) = 4.4 ± 0.1. Further, the stability constant of the 1·Cs+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log βnb (1·Cs+) = 6.3 ± 0.1. Finally, by using quantum mechanical DFT calculations, the most probable structure of the resulting cationic complex species 1·Cs+ was solved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号