首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
Cs correctors have revolutionized transmission electron microscopy (TEM) in that they substantially improve point resolution and information limit. The object information is found sharply localized within 0.1 nm, and the intensity image can therefore be interpreted reliably on an atomic scale. However, for a conventional intensity image, the object exit wave can still not be detected completely in that the phase, and hence indispensable object information is missing. Therefore, for example, atomic electric-field distributions or magnetic domain structures cannot be accessed. Off-axis electron holography offers unique possibilities to recover completely the aberration-corrected object wave with uncorrected microscopes and hence we would not need a Cs-corrected microscope for improved lateral resolution. However, the performance of holography is affected by aberrations of the recording TEM in that the signal/noise properties ("phase detection limit") of the reconstructed wave are degraded. Therefore, we have realized off-axis electron holography with a Cs-corrected TEM. The phase detection limit improves by a factor of four. A further advantage is the possibility of fine-tuning the residual aberrations by a posteriori correction. Therefore, a combination of both methods, that is, Cs correction and off-axis electron holography, opens new perspectives for complete TEM analysis on an atomic scale.  相似文献   

2.
The Gd(OH)3 nanorods with diameters of ca.40-60 nm and lengths of more than 400-550 nm have been prepared by a novelhydrothermal technique.The structural features and chemical composition of the nanorods were investigated by X-ray diffraction(XRD),transmission electron microscopy(TEM),and field emission scanning electron microscope(FESEM),selected areaelectron diffraction(SAED),and high resolution transmission electron microscopy(HRTEM).The possible mechanism for theformation of Gd(OH)3 nanorods was proposed.  相似文献   

3.
聚乙烯在一定的不良溶剂中或在熔融结晶的条件下可以得到具有弧形生长边缘的单晶,对于具有弧形边的(200)晶面的形成机理,已有一些研究报道,但由于高分子链具有成千上万个结构单元,使其结晶过程很复杂,可能会导致弧形边的成因有所不同,因此对于弧形边的形成机理有不同的解释。  相似文献   

4.
Specimen quality is vital to (scanning) transmission electron microscopy (TEM) investigations. In particular, thin specimens are required to obtain excellent high-resolution TEM images. Conventional focused ion beam (FIB) preparation methods cannot be employed to reliably create high quality specimens much thinner than 20 nm. We have developed a method for in situ target preparation of ultrathin TEM lamellae by FIB milling. With this method we are able to routinely obtain large area lamellae with coplanar faces, thinner than 10 nm. The resulting specimens are suitable for low kV TEM as well as scanning TEM. We have demonstrated atomic resolution by Cs-corrected high-resolution TEM at 20 kV on a FIB milled Si specimen only 4 nm thick; its amorphous layer measuring less than 1 nm in total.  相似文献   

5.
The most common tool used to characterize supported metal clusters is the transmission electron microscope. The main advantage of TEM is the combination of high (lateral) resolution imaging with electron diffraction. However the TEM observations are usually made ex-situ i.e. UHV deposited clusters have to be exposed to the atmosphere during transfer to the TEM. This could be a severe limitation for very small reactive clusters. This paper demonstrates that electron spectroscopies can provide in-situ information on the cluster growth (AES), on the electronic structure (ELS) and on the local atomic order (SEELFS) of the clusters. These techniques were applied to Pd clusters of varying size (~10–200 Å) vapor-deposited on thin (111) MgO support films under UHV conditions. An expansion of the lattice and a shift of the loss peaks towards higher energies are observed with decreasing particle size.  相似文献   

6.
以原位化学沉淀的方法制备了不同粒径、包覆结构PS(核)/CeO2(壳)复合微球,利用X射线衍射仪、透射电子显微镜、选区电子衍射、场发射扫描电子显微镜、能谱分析仪、Fourier转换红外光谱仪、热失重分析仪和ζ电位测定仪等手段对所制备样品的微观结构进行了表征。将所制备的复合微球用做磨料,考察其对二氧化硅介质层的抛光性能,用原子力显微镜观察和测量抛光表面的微观形貌、轮廓曲线和粗糙度。结果表明,所制备的PS/CeO2复合微球具有核壳包覆结构,粒径分别约为140,180和220 nm,PS内核被粒径约为5 nm的CeO2颗粒均匀包覆。AFM结果显示,复合磨料的粒径越小,抛光后表面粗糙度越低;且酸性(pH=3)比碱性(pH=10)抛光浆料具有更好的抛光效果。  相似文献   

7.
A conventional scanning electron microscope equipped with a LaB6 source has been modified to operate in a scanning transmission mode. Two detection strategies have been considered, one based on the direct collection of transmitted electrons, the other on the collection of secondary electrons resulting from the conversion of the transmitted ones. Two types of specimens have been mainly investigated: semiconductor multilayers and dopant profiles in As-implanted Si. The results show that the contrast obeys the rules of mass-thickness contrast whereas the resolution is always defined by the probe size independently of specimen thickness and beam broadening. The detection strategy may affect the bright field (light regions look brighter) or dark field (heavy regions look brighter) appearance of the image. Using a direct collection of the transmitted electrons, the contrast can be deduced from the angular distribution of transmitted electrons and their collection angles. When collecting the secondary electrons to explain the image contrast, it is also necessary to take into account the secondary yield dependence on the incidence angle of the transmitted electrons.  相似文献   

8.
采用溶胶-凝胶法在Ti表面修饰一层纳米TiO2(nanoTiO2)膜,经X射线粉末衍射(XRD)和扫描电镜(SEM)表征,证明多孔TiO2膜的平均孔径为80 nm.以该多孔膜电极为模板,借助电化学沉积的方法制备了纳米Na2SiF6(nano Na2SiF6).经XRD和透射电镜(TEM)测试证实该Na2SiF6为均一的白锰钒型结构,平均粒径约为20 nm.初步研究了其荧光性质,发现在452.4 nm和285 nm处分别有强的荧光发射峰和激发峰.  相似文献   

9.
以Au粒子(55nm)为核,抗坏血酸为还原剂,将不同量的Pt沉积在Au核上,制得可控壳层厚度(0.3~6nm)的Pt包Au纳米粒子(Aucore@Ptshell).用紫外-可见吸收光谱、扫描电镜(SEM)、透射电镜(TEM)和电化学循环伏安法等观测Aucore@Ptshell纳米粒子的表面形貌、结构和性能.另以SCN-为探针,考察了Pt壳厚度对Aucore@Ptshell纳米粒子SERS信号的影响.结果表明,SCN-离子的SERS信号强度随Pt壳厚度的增加呈指数衰减,当Pt壳厚度为1.4nm时,Aucore@Ptshel纳米粒子表现出铂良好的电化学性能,又具有较强的SERS活性.  相似文献   

10.
薛建跃  刘孝恒  汪信 《化学学报》2010,68(5):457-460
报道了Ag/AgBr复合体在透射电子显微镜(TEM)中观察到的一种有趣的溅射现象, 发现在高能电子的作用下, Ag/AgBr靶材飞溅出众多的纳米Ag粒子, 它们呈现很好的分散性, 其粒子的平均尺寸呈梯度变化, 初步探讨了此现象产生的机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号