首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In the framework of the approximation of local similarity to the Navier-Stokes equations, an investigation is made of the axisymmetric flow of homogeneous gas in a hypersonic shock layer, this including the region of transition through the shock wave. Boundary conditions, which take into account blowing of gas, are specified on the surface of the body and in the undisturbed flow. A numerical solution to the problem is obtained in a wide range of variation of the Reynolds number and the blowing parameter. Expressions are found for the dependences on the blowing parameter usually employed in boundary layer theory of the coefficients of friction and heat transfer on the surface of the body, which are divided by their values obtained for blowing parameter equal to zero. It is shown that these dependences are universal and the same as the dependences obtained from the solution of the equations of a hypersonic viscous shock layer with modified Rankin-Hugoniot relations across the shock wave and from the solution of the boundary layer equations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 199–202, January–February, 1980.  相似文献   

2.
A. I. Ruban 《Fluid Dynamics》1990,25(2):213-221
The development of wave packets excited in a boundary layer by means of a local deformation of the surface in the longitudinal-transverse interaction regime is considered. A solution of the linearized system of equations of interaction theory is constructed using a Laplace transformation with respect to time and a Fourier transformation with respect to the space variables. Two problems are separately examined. In the first, the disturbances are induced by a surface deformation sinusoidal in the transverse direction. It is shown that the center of the wave packet with the greatest oscillation amplitude moves in a direction opposite to that of the flow in the boundary layer. At the same time the wave packet expands, so that in the course of time any fixed point will enter the region of growing oscillations. In the second problem the source of the disturbances is isolated. In this case the wave packet acquires a horseshoe shape. Expanding, it carries the disturbances away from the source in all directions, including upstream relative to the flow in the boundary layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 59–68, March–April, 1990.  相似文献   

3.
A Blasius laminar boundary layer and a steady turbulent boundary layer on a flat plate in an incompressible fluid are considered. The spectral characteristics of the Tollmien—Schlichting (TS) and Squire waves are numerically determined in a wide range of Reynolds numbers. Based on the spectral characteristics, relations determining the three–wave resonance of TS waves are studied. It is shown that the three–wave resonance is responsible for the appearance of a continuous low–frequency spectrum in the laminar region of the boundary layer. The spectral characteristics allow one to obtain quantities that enter the equations of dynamics of localized perturbations. By analogy with the laminar boundary layer, the three–wave resonance of TS waves in a turbulent boundary layer is considered.  相似文献   

4.
This work proposes a method of inducing artificial disturbances of adjustable amplitude in a supersonic boundary layer. Using the proposed method, an experimental study is made of the development of a three-dimensional wave packet of low intensity at a frequency of 20 kHz in the boundary layer of a flat plate at Mach number M = 2.0. The Fourier components of the wave packet are determined. The data obtained are compared with the results of calculating the linear stability of the supersonic boundary layer in a plane-parallel flow approximation.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 37–43, September–October, 1984.  相似文献   

5.
A study is made of the region of free interaction of a supersonic boundary layer on a moving surface formed by a weak shock wave impinging on it from without. In the equations of motion, allowance is made for the contribution of the pressure induced by the growth in the displacement thickness of jets passing near the surface. The results are given of the numerical solution of the corresponding nonlinear problem, and the basic structure of the recirculation zones is discussed. It is noted that there are regimes in which the main recirculation zone is accompanied by an additional eddy formation with circulation in the opposite direction. In contrast to a boundary layer on a fixed body, the points at which the streamlines separate are not on the wall but within the flow.Translated from Izvestiya Akademii Nauk SSSR, Meklianika Zhidkosti i Gaza, No. 5, pp. 3–10, September–October, 1980.  相似文献   

6.
The flow arising in an incompressible liquid if, at the initial moment of time, a plate of finite length starts to move with a constant velocity in its plane, is discussed. For the case of an infinite plate, there is a simple exact solution of the Navier—Stokes equations, obtained by Rayleigh. The case of the motion of a semiinfinite plate has also been discussed by a number of authors. Approximate solutions have been obtained in a number of statements; for the complete unsteadystate equations of the boundary layer the statement was investigated by Stewartson (for example, [1–3]); a numerical solution of the problem by an unsteady-state method is given in [4]. The main stress in the present work is laid on investigation of the region of the interaction between a nonviscous flow and the boundary layer near the end of a plate. In passing, a solution of the problem is obtained for a wake, and a new numerical solution is also given for the boundary layer at the plate.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 3–8, March–April, 1977.  相似文献   

7.
The processes of wave disturbance propagation in a supersonic boundary layer with self-induced pressure [1–4] are analyzed. The application of a new mathematical apparatus, namely, the theory of characteristics for systems of differential equations with operator coefficients [5–8], makes it possible to obtain generalized characteristics of the discrete and continuous spectra of the governing system of equations. It is shown that the discontinuities in the derivatives of the solution of the boundary layer equations are concentrated on the generalized characteristics. It is established that in the process of flow evolution the amplitude of the weak discontinuity in the derivatives may increase without bound, which indicates the possibility of breaking of nonlinear waves traveling in the boundary layer.  相似文献   

8.
Self–induced excitation of periodic nonlinear waves on a viscoelastic coating interacting with a turbulent boundary layer of an incompressible flow is studied. The response of the flow to multiwave excitation of the coating surface is determined in the approximation of small slopes. A system of equations is obtained for complex amplitudes of multiple harmonics of a slow (divergent) wave resulting from the development of hydroelastic instability on a coating with large losses. It is shown that three–wave resonant relations between the harmonics lead to the development of explosive instability, which is stabilized due to the deformation of the mean (Sover the wave period) shear flow in the boundary layer. Conditions of soft and hard excitation of divergent waves are determined. Based on the calculations performed, qualitative features of excitation of divergent waves in known experiments are explained.  相似文献   

9.
The wave structure of the artificial disturbances generated by an external acoustic field in a supersonic boundary layer is investigated. The disturbances are classified with respect to phase velocity. Disturbances whose phase velocity in the direction of flow is greater than unity and waves located at the boundary of the discrete and continuous spectra are detected.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 82–86, May–June, 1989.  相似文献   

10.
In this article the boundary conditions relating the values of the hydrodynamic variables in a rarefaction wave to the surface temperature are derived. The gas-kinetic problem of the motion of vapor in a thin layer directly adjacent to a phase boundary is solved approximately for this case. If the temperature of the surface is held constant by external radiation, the resulting solution makes it possible to compute the surface temperature, the velocity of the evaporation front, and the recoil momentum.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 163–165, May–June, 1976.In conclusion, the author thanks S. I. Anisimov for useful discussions.  相似文献   

11.
The development of three-dimensional wave packets artificially introduced into a boundary layer has been experimentally investigated. The measurements were made by the hot-wire anemometer method in the boundary layer on a flat plate at a Mach number M = 4. The artificial disturbances were introduced into the boundary layer by means of an electric discharge. A Fourier analysis of the data made it possible to obtain the wave characteristics of the plane waves. The composition of the disturbances was analyzed and those most dangerous from the instability standpoint were identified. The data obtained are compared with the results of experiments carried out at M = 2. The differences in the data are discussed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 54–58, November–December, 1990.  相似文献   

12.
The effect of a wave traveling over the surface and suction-blowing in the form of a traveling wave on boundary layer stability and laminarturbulent transition is investigated. The perturbation parameters are assumed not to be related to the parameters of the Tollmien-Schlichting wave. The parameters corresponding to an increase in the critical Reynolds number by a factor of 2–2.5 are determined.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 109–115, May–June, 1988.The author is grateful to V. A. Kuparev for supplying the program for calculating the stability of the boundary layer.  相似文献   

13.
A numerical investigation in the approximation of boundary layer theory has been made of the development of the flow near the surface of a rotating plate in a two-dimensional flow with rectilinear streamlines perpendicular to the leading edge in a rotating coordinate system attached rigidly to the plate. In an earlier investigation [1] using the approximate method of integral relations, Kurosaka obtained and described quantitatively a transition from a Blasius boundary layer to an Eckmann boundary layer in the form of three-dimensional oscillations. The solution described in the present paper confirms the oscillatory nature of the development of the boundary layer, but the quantitative results differ strongly from Kurosaka's.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 154–157, May–June, 1982.  相似文献   

14.
The problem of determining the velocity field excited by a sound wave impinging on a plate at rest is analyzed as an initial- and boundary-value problem with a movable boundary for the two-dimensional wave equation. The latter problem is solved by the formulation and inversion of integral equations of the Volterra type. The solution is obtained in closed form for any angle of inclination of the incident wave relative to the plate surface and is represented by recursion relations allowing for the influence of any number of diffracted waves generated in succession at the plate boundary.Moscow. Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 123–130, March–April, 1972.  相似文献   

15.
Similarity solutions of the equations of a laminar incompressible boundary layer, formed in a rotational external flow, are investigated. Such problems arise in the analysis of the flow in a boundary layer when there is an abrupt change in the boundary conditions (for example, in the case of a discrete inflation of the boundary layer, in hypersonic flow about blunt bodies, etc.). Various approaches to their solution have been proposed earlier in [1–4]. Solved below is the so-called inverse problem of boundary layer theory (see [3], p. 200), where the contour of the body that causes a given flow outside the boundary layer is unknown beforehand and is found during the course of solution of the problem in connection with the coupling of the longitudinal and transverse velocity components. The cases of a parabolic (ue ~ y2) and a linear (ue=a(x)+b(x)y) variation in the velocity of the external flow with distance along the transverse direction are considered in detail. The latter includes an investigation of the flow in the neighborhood of the critical point of a blunt body, taking account of the vorticity of the flow in the shock layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 78–83, March–April, 1971.  相似文献   

16.
The flow in the boundary layer in the vicinity of the stagnation point of a flat plate is examined. The outer stream consists of turbulent flow of the jet type, directed normally to the plate. Assumptions concerning the connection between the pulsations in velocity and temperature in the boundary layer and the average parameters chosen on the basis of experimental data made it possible to obtain an isomorphic solution of the boundary layer equations. Equations are obtained for the friction and heat transfer at the wall in the region of gradient flow taking into account the effect of the turbulence of the impinging stream. It is shown that the friction at the wall is insensitive to the turbulence of the impinging stream, while the heat transfer is significantly increased with an increase in the pulsations of the outer flow. These properties are confirmed by the results of experimental studies [1–4].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 83–87, September–October, 1973.  相似文献   

17.
Numerical solution of the Navier-Stokes equations is used to investigate the laminar motion of an incompressible fluid in a plane layer when part of the lower boundary has a temperature different from the rest of the lower boundary. The problem is solved in the Boussinesq approximation.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 171–173, January–February, 1982.  相似文献   

18.
The results of an experimental investigation of the three-dimensional stability of a boundary layer with a pressure gradient are presented. A low-turbulence subsonic wind tunnel was employed. The development of a three-dimensional wave packet of oscillations harmonic in time in the boundary layer on a model wing is studied. The amplitudephase distributions of the pulsations in the wave packet are subjected to a Fourier analysis. Spectral (with respect to the wave numbers) decomposition of the oscillations enables the flow stability with respect to plane waves with different directions of propagation to be examined. The results are compared with the corresponding data obtained in flat plate experiments. The effect of the pressure gradient on the development of the three-dimensional spectral components of the disturbances and the dispersion properties of the flow is analyzed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 85–91, May–June, 1988.  相似文献   

19.
The development of disturbances in a boundary layer that have been induced by an external acoustic field are investigated. The problem is considered in the linear formulation. It is shown that the oscillations inside the supersonic boundary layer can have several times the intensity of the external disturbances. The susceptibility of the boundary layer to the acoustic disturbances increases with increasing Mach number. Cooling of the surface leads to a small decrease in the intensity of the longitudinal velocity oscillations in the layer. The effect of the parameters of the acoustic wave is considered, i.e., the effect of the frequency and phase velocity on the development of the disturbances.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 51–56, November–December, 1977.  相似文献   

20.
The need for the inclusion of end-wall boundary layers in the study of the aerodynamics of vortex chambers has been frequently mentioned in the literature. However, owing to limited experimental data [1–3] with reliable information on the wall layers, the existing computational methods for end-wall boundary layers are not well-founded. The question of which parameters determine the formation of end-wall flow remains debatable. In some studies [4, 5], the vortex chambers are conditionally divided into short and long chambers. However, there is no unique opinion on the role of end-wall flows in vortex chambers of different lengths. It has also not been established for what geometric and flow parameters the chamber could be considered long or short. In the present study, as in [1, 5–8], solution is obtained for the end-wall boundary-layer equations using integral methods, considering the boundary layer in the radial direction in the form of a submerged wall jet. Such an approach made it possible to use the laws for the development of wall jets [9], and obtain fairly simple relations for integral parameters, skin friction, mass flow in the boundary layer, and other characteristics. Results are compared with available experimental data and computations of others authors; turbulent flow is considered; results for laminar boundary layer are given in [10].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 117–126, September–October, 1986.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号