首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
A series of copper(II) complexes containing 6‐methyl‐2‐oxo‐1,2‐dihydroquinoline‐3‐carboxaldehyde‐derived Schiff bases have been synthesized and characterised using various analytical and spectroscopic techniques. X‐ray crystallographic analysis confirmed the true coordinating nature of ligands with copper ion. The ligands exhibited ONS tridentate neutral and monobasic coordination. The spectroscopic results evidenced the interaction of the ligands and their copper(II) complexes with nucleic acid/serum albumin. Further, the complexes showed significant activity against human skin cancer cell line (A431) and less toxicity against human keratinocyte cell line (HaCaT). Acridine orange/propidium iodide dual staining studies indicated that the major cause of A431 cell death was through necrosis. By comparing the biological activity of all the ligands, Cu(II) complexes and standard (cisplatin), complex [Cu(H‐6MOQtsc‐Ph)(H2O)]?NO3 ( 4 ) exhibited better activity than others, the activity being arranged as follows: 4  >  1  > cisplatin >  3  >  2 .  相似文献   

2.
In this study, we prepared three polymer-anchored Schiff base ligands and their Cu(II), Co(II) and Ni(II) transition metal complexes. For this purpose, we synthesized three Schiff base ligands from the reaction of 2,4-dihydroxybenzaldehyde with diamines in the ethanol solution and characterized by the analytical and spectroscopic methods. We investigated the electrochemical and photophysical properties of the free Schiff base ligands in different solvents and concentrations. In the electrochemical studies, we found that the ligands show the reversible and irreversible redox processes. In order to obtain the polymer-anchored ligands, we used Merrifield’s peptide resin (PS) as solid support. The surface morphologies of the polymer anchored Schiff base ligands were done with the scanning electron microscopy (SEM). We did alkene epoxidation and alkane oxidation reactions of the metal complexes and used the cyclohexene, styrene, cyclohexane and cyclooctane as the substrate and they show the low catalytic activity. The metal complexes have no selectivity in the oxidation reactions. The polymer anchored Schiff base ligands and their metal complexes have high thermal stability at the higher temperatures.  相似文献   

3.
Two new Schiff base ligands (L1, L2) have been prepared from the reaction of 2,6-diacetylpyridine and 2-pyridinecarboxyaldehyde with 4-amino-2,3-dimethyl-1-phenyl-3-pyrozolin-5-on, and their Co(II), Cu(II), Ni(II), Mn(II), and Cr(III) metal complexes have also been prepared. The complexes are formed by coordination of N and O atoms of the ligands. Their structures were characterized by physico-chemical and spectroscopic methods. The analytical data shows that the metal to ligand ratio in the Schiff base complexes is 1:2. The Schiff base ligands and all complexes were evaluated for their in vitro antibacterial and antifungal activities by the disc diffusion method. In addition, the genotoxic properties of the ligands were studied.  相似文献   

4.
Reactions of L-methionine, L-serine, and L-valine with 5-substituted-2-hydroxybenzene-1,3-dicarbaldehydes gave a series of chiral Schiff base pincer ligands which were reduced to the corresponding diamines. The new Schiff base ligands reacted with copper(II) chloride to form dinuclear copper complexes which were found to be capable of recognizing tyrosine enantiomers in aqueous solution. The structure of the complexes was determined on the basis of their spectral parameters.  相似文献   

5.
The iron coordination and biological chemistry of a series of heterocyclic dithiocarbazate Schiff base ligands is reported with regard to their activity as Fe chelators for the treatment of Fe overload and also cancer. The ligands are analogous to tridentate heterocyclic hydrazone and thiosemicarbazone chelators we have studied previously which bear NNO and NNS donor sets. The dithiocarbazate Schiff base ligands in this work also are NNS chelators and form stable low spin ferric and ferrous complexes and both have been isolated. In addition an unusual hydroxylated ligand derivative has been identified via an Fe-induced oxidation reaction. X-ray crystallographic and spectroscopic characterisation of these complexes has been carried out and also the electrochemical properties have been investigated. All Fe complexes exhibit totally reversible Fe(III/II) couples in mixed aqueous solvents at potentials higher than found in analogous thiosemicarbazone Fe complexes. The ability of the dithiocarbazate Schiff base ligands to mobilise Fe from cells and also to prevent Fe uptake from transferrin was examined and all ligands were effective in chelating intracellular Fe relative to known controls such as the clinically important Fe chelator desferrioxamine. The Schiff base ligands derived from 2-pyridinecarbaldehyde were non-toxic to SK-N-MC neuroepithelioma (cancer) cells but those derived from the ketones 2-acetylpyridine and di-2-pyridyl ketone exhibited significant antiproliferative activity.  相似文献   

6.
Two series of new Cu(II) complexes derived from the reaction of copper acetate with the non-linear 1,2,3-triazole-based Schiff bases have successfully been synthesised. The structures of the ligands and its complexes were elucidated by elemental analysis, FT-IR, 1H-NMR and UV–visible spectroscopic techniques. The differential scanning calorimetry and polarizing optical microscopy supported the anisotropic properties of uncoordinated ligands in which the focal conic fan-shaped texture and/or broken fan-shaped texture characteristics of respective SmA and SmC phases were recorded. However, not all of their corresponding Cu(II) complexes are mesogenic. Although the iodo-substituted ligands with even parity C10H29 to C14H33 are non-stable and exhibit SmA phase which is not reproducible, the ultimate Cu(II) complexes show exclusively stable SmA phase. This observation can be ascribed to the enhanced colinearity and molecular anisotropic by the presence of Cu-N and Cu-O coordination modes. On the other hand, the comparison studies show that different positions of ortho-hydroxyl group affect the mesomorphic and thermal behaviour of ligands and Cu(II) complexes.  相似文献   

7.
A range of monomeric tetra‐coordinate copper (II) and zinc (II) complexes based on N,O‐bidentate salicylaldimine Schiff base ligands has been synthesized and characterized using various spectroscopic techniques. These complexes were then evaluated as initiators in ring‐opening polymerization of lactides at both 70 °C and 110 °C. The effect of structural changes in the complexes on the ability of these compounds to initiate lactide polymerization as well as the impact on the chemical and physical characteristics of the polymers obtained indicate that the coordination geometry of the metal complex, M? O bond length and substituents on the Schiff base ligand all play a role in the catalyst activity. Electronic factors were dominant in the case of the copper complexes while steric factors prevailed in the case of Zn initiators. Both the Zn and Cu complexes exhibit characteristics of living ring opening polymerization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, two Schiff base ligands (HL(1) and HL(2)) and their Cu(II), Co(II), Ni(II), Pd(II) and Ru(III) metal complexes were synthesized and characterized by the analytical and spectroscopic methods. Alkane oxidation activities of the metal complexes were studied on cyclohexane as substrate. The ligands and their metal complexes were evaluated for their antimicrobial activity against Corynebacterium xerosis, Bacillus brevis, Bacillus megaterium, Bacillus cereus, Mycobacterium smegmatis, Staphylococcus aureus, Micrococcus luteus and Enterococcus faecalis (as gram-positive bacteria) and Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Yersinia enterocolitica, Klebsiella fragilis, Saccharomyces cerevisiae, and Candida albicans (as gram-negative bacteria). The antioxidant properties of the Schiff base ligands were evaluated in a series of in vitro tests: 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and reducing power activity of superoxide anion radical generated non-enzymatic systems. Electrochemical and thermal properties of the compounds were investigated.  相似文献   

9.
Platinum metal complexes are the most common chemotherapeutics currently used in cancer treatment. However, the frequent adverse effects, as well as acquired resistance by tumor cells, urge the development of effective alternatives. In the recent past, copper complexes with Schiff base ligands have emerged as good alternatives, showing interesting results. Accordingly, and in continuation of previous studies in this area, three new camphoric acid-derived halogenated salen ligands and their corresponding Cu (II) complexes were synthesized and their antitumor activity was evaluated in order to determine the influence of the type and number of halogens present (Br, Cl). The in vitro cytotoxic activity was screened against colorectal WiDr and LS1034 and against breast MCF-7 and HCC1806 cancer cell lines. The results proved the halogenated complexes to be very efficient, the tetrachlorinated Cu (II) complex being the most promising, presenting IC50 of 0.63–1.09 μM for the cell lines studied. The complex also shows selectivity to colorectal cancer cells compared to non-tumor colon cells. It is worth highlighting that the tetrachlorinated Cu (II) complex, our most efficient complex, shows a significantly more powerful antitumor effect than the reference drugs currently used in conventional chemotherapy. The halogenated salen and corresponding complexes were also screened for their antimicrobial activity against four bacterial species-Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Pseudomonas aeruginosa-and four fungal species-Candida albicans, Candida glabrata, Aspergillus fumigatus and Alternaria alternata. The compounds were found to exhibit moderate to strong antibacterial activity against the bacterial strains studied. NMR studies and theoretical calculations provided some insight into the structure of the ligands and copper complexes. Considering the results presented herein, our work validates the potential use of copper-based chemotherapeutics as alternatives for cancer treatment.  相似文献   

10.
The proton dissociation processes of two tridentate salicylidene aminoguanidine Schiff bases (SISC, Pro-SISC-Me), the solution stability and electrochemical properties of their Cu(II), Fe(II) and Fe(III) complexes were characterized using pH-potentiometry, cyclic voltammetry and UV-visible, 1H NMR and electron paramagnetic resonance spectroscopic methods. The structure of the proline derivative (Pro-SISC-Me) was determined by X-ray crystallography. The conjugation of L-proline to the simplest salicylidene aminoguanidine Schiff base (SISC) increased the water solubility due to its zwitterionic structure in a wide pH range. The formation of mono complexes with both ligands was found in the case of Cu(II) and Fe(II), while bis complexes were also formed with Fe(III). In the complexes these tridentate ligands coordinate via the phenolato O, azomethine N and the amidine N, except the complex [Fe(III)L2]+ of Pro-SISC-Me in which the (O,N) donor atoms of the proline moiety are coordinated beside the phenolato O, confirmed by single crystal X-ray crystallographic analysis. This binding mode yielded a stronger Fe(III) preference for Pro-SISC-Me over Fe(II) in comparison to SISC. This finding is also reflected in the lower redox potential value of the iron-Pro-SISC-Me complexes. The ligands alone were not cytotoxic against human colon cancer cell lines, while complexation of SISC with Cu(II) resulted in moderate activity, unlike the case of its more hydrophilic counterpart.  相似文献   

11.
Two new hexadentate N2O4 donor Schiff bases, H4L1 and H4L2, were synthesized by condensation of 4,6-diacetylresorcinol with glycine and alanine, respectively. The structures of the ligands were elucidated by elemental analyses, IR, 1H NMR, electronic, and mass spectra. Reactions of the Schiff bases with copper(II), nickel(II), and iron(III) nitrates in 1 : 2 molar ratio gave binuclear metal complexes and, in the presence of 8-hydroxyquinoline (8-HQ) or 1,10-phenanthroline (Phen) as secondary ligands (L′), mixed-ligand complexes in two molar ratios 1 : 2 : 2 and 1 : 2 : 1 (L1/L2 : M : L′). The complexes were characterized by elemental and thermal analyses, IR, electronic, mass, and ESR spectral studies, as well as conductivity and magnetic susceptibility measurements. The spectroscopic data reveal that the Schiff-base ligands were dibasic or tetrabasic hexadentate ligands. The coordination sites with the metal ions are two azomethine nitrogens, two oxygens of phenolic groups, and two oxygens of carboxylic groups. Copper(II) complexes were octahedral and square planar while nickel(II) and iron(III) complexes were octahedral. The Schiff bases, H4L1 and H4L2, and some of their metal complexes showed antibacterial activity towards Gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and Gram-negative (Pseudomonas fluorescens and Pseudomonas phaseolicola) bacteria and antifungal activity towards the fungi Fusarium oxysporium and Aspergillus fumigatus.  相似文献   

12.
A series of chromium(III) Schiff base complexes immobilized on MCM-41 were prepared and characterized by various physicochemical and spectroscopic methods. The complexes were used for the selective oxidation of alcohols by 30% hydrogen peroxide without any organic solvent, phase transfer catalyst or additive. The immobilized complexes proved to be effective catalysts and generally exhibited much higher catalytic performance than their corresponding homogeneous analogs. The catalytic performance of the immobilized complexes was also found to be closely related to the Schiff base ligands used. Under the optimal reaction conditions, secondary alcohols, cyclic alcohols and benzyl alcohol were prevailingly oxidized to their corresponding ketones or aldehydes.  相似文献   

13.
Substituent effects of beta-diketiminate ligands on the structure and physicochemical properties of the copper(II) complexes have been systematically investigated by using 3-iminopropenylamine derivatives R1LR3H, R3-N=CH-C(R1)=CH-NH-R3, where R1 is Me, H, CN, or NO2, and R3 is Ph, Mes (mesityl), Dep (2,6-diethylphenyl), Dipp (2,6-diisopropylphenyl), or Dtbp (3,5-di-tert-butylphenyl). When the ligands with R3=Ph or Dtbp were treated with CuII(OAc)2, bis(beta-diketiminate) copper(II) complexes exhibiting distorted tetrahedral geometries were obtained, the crystal structures of which were nearly the same as each other regardless of the alpha-substituent (R1); dihedral angles between the two beta-diketiminate coordination planes are 62.5 +/- 1.2 degrees, and the Cu-N bond lengths are 1.959 +/- 0.008 A. The distorted tetrahedral structures are maintained in solution, but the spectroscopic features, especially gII values of the ESR spectra and the d-d bands of the absorption spectra, as well as the electrochemical behaviors of the complexes, are significantly affected by the electronic nature of R1. The ligands with R3=Mes and Dep, on the other hand, gave di(mu-hydroxo)dicopper(II) complexes, and their crystal structures as well as spectroscopic and electrochemical features have also been explored. Furthermore, the ligand with the more sterically encumbered aromatic substituent (Dipp) provided a mononuclear four-coordinate square planar copper(II) complex supported by one beta-diketiminate ligand and one didentate acetate ion. Thus, the beta-diketiminate ligands with a variety of substituents (R1 and R3) have been explored to provide coordinatively unsaturated (four-coordinate) mononuclear and dinuclear copper(II) complexes with significantly different coordination geometry and properties.  相似文献   

14.
Cu(II) complexes with Schiff bases DMIIMP, DMIIMBD, DMIIMBP, DMIIMCP, DMIIMMP, and DMIIMNP (see Introduction for definitions) are derived from condensation of 3,4-dimethyl 5-amino-isoxazole with salicylaldehyde and substituted salicylaldehydes. The newly synthesized ligands were characterized by IR, UV-Vis, 1H NMR, 13C NMR, mass spectra, and elemental analysis. The Cu(II) complexes were characterized by IR, UV-Vis, ESR, elemental analysis, magnetic moments, thermogram, DTA, and single crystal analysis. The complexes have general formula [M(L)2]. The Schiff bases are bidentate coordinating through the azomethine nitrogen and phenolic oxygen of salicylaldehydes. Based on the analytical and spectral data, four-coordinate geometry is assigned for all the complexes. ESR and single crystal analysis suggests square planar geometry for all complexes. [Cu(DMIIMP)2] crystallizes in the orthorhombic system. Antimicrobial studies of Schiff bases and their metal complexes show significant activity with the metal complexes showing more activity than corresponding Schiff bases. Cytotoxicity of the copper complexes on human cervical carcinoma cells (HeLa) was measured using the Methyl Thiazole Tetrazolium assay.  相似文献   

15.
Copper(II) and zinc(II) complexes of Schiff bases obtained by condensation of amoxicillin and cephalexin with salicylaldehyde/pyridoxal were prepared and characterized by microanalytical, thermogravimetric, magnetic and spectroscopic data. All the complexes were found to be six‐coordinate and containing two water molecules. The electron paramagnetic resonance spectral lines exhibited rhombic distortion from axial symmetry, with g|| > g? > ge, in the copper(II) complexes. The geometry of the zinc(II) complexes appears to be octahedral. All the compounds under investigation showed antibacterial activity. The antibacterial activity showed the following trend: copper(II) complexes > zinc(II) complexes > Schiff base ligands > parent drugs. The copper(II) complexes with the Schiff bases derived from cephalexin showed substantially enhanced activity against Pseudomonas aeruginosa compared with the parent drug. All the copper complexes were also found to be active against kaolin paw oedema, whereas the parent drugs were inactive. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
New metal based triazoles (1–12) have been synthesized by the interaction of novel Schiff base ligands (L1–L3) with the Co(II), Ni(II), Cu(II) and Zn(II) metal ions. The Schiff base ligands and their all metal(II) complexes have been thoroughly characterized using various physical, analytical and spectroscopic techniques. In vitro bacterial and fungal inhibition studies were carried out to examine the antibacterial and antifungal profile of the Schiff bases in comparison to their metal(II) complexes against two Gram‐positive, four Gram‐negative and six fungal strains. The bioactivity data showed the metal(II) complexes to have more potent antibacterial and antifungal activity than their uncomplexed parent Schiff bases against one or more bacterial and fungal species. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Reaction of pyridoxal hydrochloride and sulfanilic acid with CoCl2 in aqueous methanol solution afforded a Co(II) Schiff base complex, which was characterized by physico-chemical and spectroscopic methods. The structure of the complex was determined by single crystal X-ray diffraction. In the complex, the Co(II) is sandwiched at the edge of two parallel Schiff base ligands, being coordinated by two phenolic O and two imine N atoms of two Schiff base ligands plus two O atoms of water ligands, forming a distorted octahedral coordination environment. Thermal stability measurements showed that the skeleton of the complex is stable up to 500?K. The antibacterial activity of the complex was screened using the paper disc diffusion method.  相似文献   

18.
A series of tripodal ligands derived from nitrilotriacetic acid and extended by three converging, metal-binding, cysteine chains was synthesised. Their ability to bind soft metal ions thanks to their three thiolate functions was investigated by means of complementary analytical and spectroscopic methods. Three ligands that differ by the nature of the carbonyl group next to the coordinating thiolate functions were studied: L(1) (ester), L(2) (amide) and L(3) (carboxylate). The negatively charged derivative L(3), which bears three carboxylate functions close to the metal binding site, gives polynuclear copper(I) complexes of low stability. In contrast, the ester and amide derivatives L(1) and L(2) are efficient Cu(I) chelators with very high affinities, close to that reported for the metal-sequestering metallothioneins (log K≈19). Interestingly, these two ligands form mononuclear copper complexes with a unique MS(3) coordination in water solution. An intramolecular hydrogen-bond network involving the amide functions in the upper cavity of the tripodal ligands stabilises these mononuclear complexes and was evidenced by the very low chemical-shift temperature coefficient of the secondary amide protons. Moreover, L(1) and L(2) display large selectivities for the targeted metal ion that is, Cu(I), with respect to bioavailable Zn(II). Therefore the two sulfur-based tripods L(1) and L(2) are of potential interest for intracellular copper detoxication in vivo, without altering the homeostasis of the essential metal ion Zn(II).  相似文献   

19.
Binary complexes of α-hydroxy acids (L-Tartaric acid and L-Malic acid) with d-electron metal ions (copper, cobalt, nickel) were investigated. Potentiometric measurements have been performed in aqueous solution with computer analysis of the data for determination of the stability constants of complexes formed in the studied systems. The coordination mode of the complexes was defined using spectroscopic methods: electron paramagnetic resonance (EPR), ultraviolet-visible (UV-Vis), circular dichroism (CD), and infrared (IR). Results of the equilibrium studies have provided evidence for the formation of dimers with copper(II) ions and monomers with cobalt(II) and nickel(II) ions.  相似文献   

20.
Two new Schiff base ligands with chromone moiety and their transition metal complexes were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conductance and TGA analyses, FT IR, UV-Vis, NMR and mass spectroscopy. All the complexes synthesized have been investigated as functional models for catechol oxidase (catecholase) activity by employing 3,5-di-tert-butylcatechol as a model substrate. The two mononuclear copper(II) and two mononuclear iron(II) complexes show catecholase activity with turnover (kcat) numbers lying in the range 27.2–1328.4 h?1. According to the kinetic measurement results, the rate of catechol oxidation follows first order kinetics and iron(II) complexes were found to have higher catalytic activity than those of copper(II) complexes. Electron-donating substituent on Schiff base ligand enhanced the catalytic activity of metal complexes while the electron-withdrawing substituent led to a decrease in activity. The electrochemical properties of two Schiff bases and their metal complexes were also investigated by Cyclic Voltammetry (CV) using glassy carbon electrode (GCE) at various scan rates. Electrochemical processes of all the compounds were observed as irreversible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号