首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A confirmatory multi-residue method has been developed to allow for the detection, confirmation and quantification of eleven coccidiostats in animal feed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The method can be used to determine halofuginone, robenidine, nicarbazin, diclazuril, decoquinate, semduramicin, lasalocid, monensin, salinomycin, narasin, maduramicin at levels relating to unavoidable carry over as stated in Regulation 2009/8/EC. Feed samples are extracted with water and acetonitrile with the addition of anhydrous magnesium sulphate and sodium chloride. The extract then undergoes a freezing out step before being diluted and injected onto the LC-MS/MS system. The LC-MS/MS system is run in MRM mode with both positive and negative electrospray ionisation and can confirm all eleven analytes in a run time of 19 min. The sensitivity of the method allows quantification and confirmation for all coccidiostats at a 0.5% carry over level. The method was validated over three days in accordance with of European legislation; Commission Decision 2002/657/EC. Validation criteria of accuracy, precision, decision limit (CCα), and detection capability (CCβ) along with measurement uncertainty are calculated for all analytes. The method was then successfully used to analyse a number of feed samples that contained various coccidiostat substances.  相似文献   

2.
A liquid chromatographic tandem mass spectrometric (LC–MS–MS) method for the determination of five chemical coccidiostats (decoquinate, diclazuril, halofuginone, nicarbazin, and robenidine) and five ionophore coccidiostats (maduramicin, monensin, narasin, salinomycin, and semduramicin) in yoghurt, kefir, and sour cream is presented. Lasalocid, the sixth ionophore listed in 124/2009/EC was not included because of its extremely dissimilar behavior during sample preparation. Main steps of the method include extraction with acetonitrile, centrifugation, clean-up on Oasis HLB solid phase extraction cartridge, evaporation under nitrogen stream, and LC–MS–MS determination. Selectivity, linearity, sensitivity, accuracy, repeatability, within-laboratory reproducibility, limit of determination, and limit of quantitation were determined during the validation procedure. The method proved to be applicable for both qualitative and quantitative determination of the ten above-mentioned target compounds. In our in-house fermentation experiments, milk fortified with coccidiostats was fermented to get yoghurt, kefir, and sour cream. Our results show that the coccidiostat content did not change significantly during fermentation for any of the target compounds.  相似文献   

3.
The confirmatory LC-MS/MS method for the determination of residues for twelve coccidiostats including ionophore antibiotics (lasalocid, maduramycin, monensin, narasin, salinomycin, semduramycin) and chemical coccidiostats (clazuril, decoquinate, diclazuril, halofuginone, nicarbazin and robenidine) in poultry liver has been developed. The sample preparation was based on extraction with acetonitrile, defatting with Alumina columns and clean-up on Oasis HLB spe. The separation of analytes was performed on PhenylHexyl column with a gradient of acetonitrile, methanol and the ammonium formate pH 4.0. For all analytes, at least 2 diagnostic fragmentation ions were monitored. The validation, performed according to the CD 2002/657/EC, proved the suitability of the method for the confirmatory analysis of the coccidiostats. For lasalocid, however, low reproducibility was observed and the proper quantification could not be performed with this method.  相似文献   

4.
The presence of coccidiostats in meat products represents an important topic because of the animal administration of these substances, authorized as feed additives for targeted species, in order to prevent and inhibit coccidiosis. Coccidiostats include both ionophores and synthetic molecules characterized by different chemical–physical properties such as polarity. Meat is a matrix characterized by many interfering compound groups, such as proteins, phospholipids, and fats. High-performance liquid chromatography (HPLC) coupled to mass spectrometry (MS) analysis allows the required selectivity and sensitivity for discriminating analytes and matrix interferences. For these reasons, an LC–MS/MS method for the analysis of coccidiostats in meat products was developed without SPE purification steps. The correct analyte quantification is allowed by matrix-matched calibration. The method validation was performed by the replicated analysis of spiked meat samples at two different concentration levels (limit of quantification—LOQ—and a 10 times LOQ) in order to evaluate method recovery and repeatability, plus spiked samples at higher concentrations up to 10,000 μg/kg. Moreover, the metrological approach was used for the calculation of method uncertainty. The application of the developed method to real samples evidenced the presence of some non-ionophores coccidiostats in the meat and liver of chicken and rabbit species. Although, the determined concentration was below the established MRLs, the monitoring of coccidiostats in the meat supply chain is confirmed as a good strategy in order to safeguard consumer health.  相似文献   

5.

A liquid chromatographic tandem mass spectrometric (LC–MS–MS) method for the determination of five chemical coccidiostats (decoquinate, diclazuril, halofuginone, nicarbazin, and robenidine) and five ionophore coccidiostats (maduramicin, monensin, narasin, salinomycin, and semduramicin) in yoghurt, kefir, and sour cream is presented. Lasalocid, the sixth ionophore listed in 124/2009/EC was not included because of its extremely dissimilar behavior during sample preparation. Main steps of the method include extraction with acetonitrile, centrifugation, clean-up on Oasis HLB solid phase extraction cartridge, evaporation under nitrogen stream, and LC–MS–MS determination. Selectivity, linearity, sensitivity, accuracy, repeatability, within-laboratory reproducibility, limit of determination, and limit of quantitation were determined during the validation procedure. The method proved to be applicable for both qualitative and quantitative determination of the ten above-mentioned target compounds. In our in-house fermentation experiments, milk fortified with coccidiostats was fermented to get yoghurt, kefir, and sour cream. Our results show that the coccidiostat content did not change significantly during fermentation for any of the target compounds.

  相似文献   

6.
This contribution presents a simple, rapid and sensitive method for determining the residues of a wide variety of coccidiostats in eggs and chicken. Fourteen target analytes from different classes with different polarities were simultaneously extracted from eggs and chicken using acetonitrile. Sample extracts were further concentrated and directly injected into a liquid chromatography system based on a C-18 column separation and acquired using electrospray ionization tandem mass spectrometry in the positive or negative mode. Recoveries based on matrix-fortified calibrations for eggs and chickens ranged from 78.0 to 125.2%. The limits of quantification for all analytes ranged from 0.1 to 0.2 μg kg?1.  相似文献   

7.
A simple and rapid method able to determine residues of seven quinolone antibacterials in whole eggs is presented here. This method is based on the matrix solid-phase dispersion technique with hot water as extractant followed by liquid chromatography–tandem mass spectrometry. After depositing 1.5 g of an egg sample containing the analytes and the analyte surrogate (norfloxacin) on sand (crystobalite), this material was packed into an extraction cell. Quinolones were extracted by flowing 6 mL of water acidified with 50 mmol/L formic acid through the cell heated at 100 °C. After pH adjustment and filtration of the extract, 100 μL of it was injected into the LC column. MS data acquisition was performed in the multiple reaction monitoring mode, selecting two precursor ion to product ion transitions for each target compound. Hot water appeared an efficient extracting medium, since absolute recoveries of the analyte in egg at the level of 20 ng/g were 89–103%. Estimated limits of quantification (S/N = 10) were 0.2–0.6 ng/g. Based on the EU Commission Decision 2002/657/EC, the method was validated in terms of ruggedness, specificity, linearity, within-laboratory reproducibility, decision limit (CCα and detection capability (CCβ). Depending on the particular analyte, CCαs ranged between 0.41 and 2.6 ng/g, while CCβs were 0.64–3.7 ng/g. The method was linear in the 3–30 ng/g range, with typical R2 values higher than 0.97. The within-laboratory reproducibility (n = 21) at 6 ng/g level was in the 9.0–12% range. After validation, a depletion study of enrofloxacin and one of its metabolites, i.e. ciprofloxacin, in eggs was conducted.  相似文献   

8.
采用液相色谱-串联质谱法(LC-MS/MS)测定了水产品中结晶紫以及它的隐色代谢物残留。匀质后的水产品样品用乙腈和乙酸铵缓冲液提取,合并提取液,用二氯甲烷反提取,经中性氧化铝柱和PRS柱固相萃取净化,且不使用氧化铅柱在线氧化,色谱分离后直接进入串联质谱检测器。采用电喷雾正离子,多反应监测(MRM)模式检测。方法的检出限可达0.5 ng/g,线性方程的相关系数r大于0.99,添加样品平均回收率为77.6%~93.8%,相对标准偏差均小于8.2%。  相似文献   

9.
A method is described for the identification and the quantitative determination of the triphenylmethane dyes, malachite green (MG), crystal violet (CV), brilliant green (BG) and leuco malachite green (LMG) and leuco crystal violet (LCV). The analytes were isolated from the matrix by liquid-liquid extraction with acetonitrile. Determination was performed using LC-MS/MS with positive electrospray ionisation. 4 different deuterated internal standards were introduced to improve the quantitative performance of the method. The method has been validated in line with the EU criteria of Commission Decision 2002/657/EC in accordance with the minimum required performance limit (MRPL) set at 2 μgkg(-1) for the sum of MG and LMG. For all the monitored compounds, accuracy, intra-day and inter-day precision were determined at each level of fortification (0.5, 0.75, 1.0 and 2.0 μgkg(-1)). Decision limits CCα and detection capabilities CCβ were calculated according to the standard ISO 11843-2. A study on the applicability of the method was conducted on various aquacultured species with the aim to assess the matrix effects. The presence of residues of leuco brilliant green in fish has also been confirmed from experimental study performed on trout treated with brilliant green, using LTQ-Orbitrap mass spectrometer.  相似文献   

10.
High-resolution time-of-flight mass spectrometry combined with high performance liquid chromatography is proposed for the detection and determination of 25 mycotoxins and 8 food additives (coccidiostats) in animal feed, using simplified and rapid sample preparation. We developed a procedure for the identification and determination of analytes by the standard addition method. The lower limit of the analytical range is 1 (400) µg/kg for mycotoxins; the analytical range for coccidiostats in feed is 10–200 mg/kg. The relative standard deviation of the results does not exceed 10%. The analysis time is 0.5–1 h.  相似文献   

11.
采用液相色谱-串联质谱法(LC-MS/MS)同时测定水产品中的孔雀石绿、结晶紫以及它们的隐色代谢物残留。匀质后的水产品样品用乙腈和乙酸铵缓冲液提取。合并提取液,用二氯甲烷反提取,经中性氧化铝柱和PRS柱固相萃取净化。采用ZORBAX SB-C18色谱柱,并以0.5 mmol/L乙酸铵-乙腈(体积比为10∶90)混合溶液为流动相,无需使用氧化铅柱在线氧化,色谱分离后直接进入串联质谱检测器检测。采用电喷雾离子源,正离子多反应监测(MRM)模式检测。方法的检测限(S/N=3)可达0.5 ng/g,平均加标回收率为77.6%~98.1%,相对标准偏差均小于8.2%。大量实际水产品样品的检测结果表明,此方法适合于对水产品中孔雀石绿、结晶紫以及它们的隐色代谢物的残留检测。  相似文献   

12.
A method for the determination of 15 aromatic hydrocarbons in eluates from solid residues produced during the co-pyrolysis of plastics and pine biomass was developed. In a first step, several sampling techniques (headspace solid phase microextraction (HS-SPME), static headspace sampling (HS), and dispersive liquid-liquid microextraction (DLLME) were compared in order to evaluate their sensitivity towards these analytes. HS-SPME and HS sampling had the better performance, but DLLME was itself as a technique able to extract volatiles with a significant enrichment factor.HS sampling coupled with GC-MS was chosen for method validation for the analytes tested. Calibration curves were constructed for each analyte with correlation coefficients higher than 0.999. The limits of detection were in the range of 0.66-37.85 ng/L. The precision of the HS method was evaluated and good repeatability was achieved with relative standard deviations of 4.8-13.2%. The recoveries of the analytes were evaluated by analysing fortified real eluate samples and were in the range of 60.6-113.9%.The validated method was applied in real eluate samples. Benzene, toluene, ethylbenzene and xylenes (BTEX) were the compounds in higher concentrations.The DLLME technique coupled with GC-MS was used to investigate the presence of less volatile contaminants in eluate samples. This analysis revealed the presence of significant amounts of alkyl phenols and other aromatic compounds with appreciable water solubility.  相似文献   

13.
A method was developed for determining benzocaine and N-acetylbenzocaine concentrations in fillet tissue of rainbow trout. The method involves extracting the analytes with acetonitrile, removing lipids or hydrophobic compounds from the extract with hexane, and providing additional clean-up with solid-phase extraction techniques. Analyte concentrations are determined using reversed-phase high-performance liquid chromatographic techniques with an isocratic mobile phase and UV detection. The accuracy (range, 92 to 121%), precision (R.S.D., < 14%), and sensitivity (method quantitation limit, < 24 ng/g) for each analyte indicate the usefulness of this method for studies characterizing the depletion of benzocaine residues from fish exposed to benzocaine.  相似文献   

14.
A simple and rapid method able to determine residues of erythromycin A, tylosin and tilmicosin in whole eggs is presented here. The analytical protocol involves a one-step extraction followed by liquid chromatography (LC)–tandem mass spectrometry. Analytes were extracted from 1 g of egg spiked with an internal standard (josamycin) with acetonitrile. In terms of accuracy, matrix effect and ion signal stability, no extract cleanup was found to be necessary. After partial solvent removal, the final extract was injected into the LC column. Extraction was effective, since absolute recovery of the analyte in egg at their maximum residue limit (MRL) level was 85–102%. Estimated limits of quantification (S/N = 10) were 0.2–0.5 ng/g. Based on the EU Commission Decision 2002/657/EC, the method was in-house validated in terms of ruggedness, specificity, linearity, within-laboratory reproducibility, decision limit (CCα) and detection capability (CCβ). The within-laboratory reproducibility, expressed as RSD (n = 18 at the MRL levels), was not higher than 13%. After validation, a short study on EA depletion in eggs was conducted after administration of this drug to laying hens.  相似文献   

15.
Veterinary drugs are widely and legally used to treat and prevent disease in livestock. However, drugs are also used illegally as growth-promoting agents. To protect the health of consumers, maximum residue limits (MRL) in food of animal origin have been established and are listed in Regulation 37/2010. According to this regulation, more than 300 drugs need to be controlled regularly in laboratories for residues of veterinary drugs. A cost-effective analytical method is very important and explains why the development of multi-residual methods is becoming popular in laboratories. The aim of this work is to describe a simple, rapid and economical high-performance liquid chromatography-tandem mass spectrometry method for the simultaneous identification and quantification of 21 veterinary drugs in pork muscle samples. The sample clean-up procedure is performed with acidified dichloromethane and does not require solid phase extraction. The method is applicable to nine sulfonamides and seven coccidiostats identified within 36 min. Calculated relevant validation parameters such as recoveries (from 72.to 126 %), intra-precision and intermediate precision (relative standard deviation below 40 %) and decision limits (below 7 μg Kg(-1)) were within acceptable range and in compliance with the requirements of Commission Decision 2002/657/EC.  相似文献   

16.
Avermectines are antiparasitic agents widely used as veterinary drugs for food producing animals. The European Community, due to their side effects, limited the use of these molecules establishing maximum residue limits (MRLs) in some foods. A validated qualitative and quantitative high performance liquid chromatography method with fluorescence detection (HPLC-FL) is presented for the simultaneous determination of ivermectin (IVM), abemectin (ABA), moxidectin (MOX), eprinomectin (EPR), doramectin (DOR) and emamectin (EMA) in foodstuffs (muscle, eggs and milk). Samples were extracted with acetonitrile, purified with liquid-liquid extraction (LLE), and analysed by HLPC-FL previous derivatization with trifluoroacetic anhydride (TFAA) in presence of 1-methyl-imidazole (MI) and acetic acid. To date, the presented method is the first validated for the matrix eggs, and in accordance with the requirements set by Commission Decision 2002/657/EC. Recoveries of the methods, calculated spiking the samples in the range 5.0-100.0 μg kg(-1), were 64-83% for muscle, 65-89% for milk and 63-84% for eggs. The precision (CV) ranged between 9.2 and 17.1% for muscle, 9.9 and 16.6% for milk and from 9.4 to 17.4% for eggs. Linearity for the six analytes was calculated from 5.0 to 200.0 μg kg(-1). The main advantages of the presented method are its rapidity, the specificity, the good precision and recovery that make it very suitable to the detection and determination of avermectines.  相似文献   

17.
A chemical-probe array composed of 47 off-the-shelf dyes was prepared in solution format (New York Tongue 1: NYT-1) and was tested in the identification and quantitation of 47 cation analytes, including 44 metal ions, in addition to H(+), NH(4) (+), and tetrabutylammonium (TBA). The cation solutions were tested in a series of concentrations and the fold-change in effective absorbance was analyzed by principal-component analysis (PCA), hierarchical-cluster analysis (HCA), and nearest-neighbor decision to determine both identity and quantity of the analytes. Apart from alkali-metal ions (Na(+), K(+), Li(+), Cs(+), and Rb(+)), which behave very similarly to each other due mainly to their low response, most of the cations were clearly distinguishable at 10 mM concentration. The practical detection limit of each analyte was also determined by a sequential dilution and the nearest-neighbor decision method. In the finalized working analyte concentration range (approximately 10 mM down to 0.33 microM), by considering alkali metals as one analyte group, most of the analytes were correctly identified (99.4 %). Furthermore, the success rate at which the concentration of each analyte was correctly determined was also high (96.8 %).  相似文献   

18.
A sensitive and selective liquid chromatographic tandem mass spectrometric method (LC/MS/MS) for the simultaneous detection of the ionophoric coccidiostats narasin, monensin, lasalocid and salinomycin in whole eggs has been developed. A very simple sample preparation consisting of an extraction with an organic solvent was carried out. Sample extracts were injected into the LC/MS/MS system on a C18 column and an isocratic elution was performed. Nigericin was used as internal standard. The precursor ions produced by electrospray positive ionisation were selected for collisional dissociation with argon into product ions. Validation of the methods was performed based on Commission Decision 2002/657/EC.1 CC(alpha) was found to be 1 microg/kg for all four compounds. Monitoring of Belgian egg samples in 2004 revealed that residues of salinomycin, lasalocid and monensin could be found.  相似文献   

19.
A comparison was made between electrospray, atmospheric pressure chemical and atmospheric pressure photospray ionizations to evaluate the MS/MS responses of standard sulfonamides and honey spiked samples. The sample preparation entails an acidic hydrolysis followed by a liquid/liquid extraction. Full method validation was realised by LC-APPI-MS/MS. Decision limit and detection capability were calculated for each analyte (at 50 microg/kg) and ranged between 53.6 and 56.9 and 57.5 and 63.2 microg/kg, respectively. Limits of detection and of quantification ranged, respectively, at 0.4-4.5 and 1.2-15.0 microg/kg. Precursor ion scan experiments of m/z 92 were also carried out as a survey experiment, linked with an enhanced product ion scan experiment to potentially identified additional sulfonamides via a library search.  相似文献   

20.
液相色谱串联质谱法测定鸡肉中20种抗球虫药物多残留   总被引:2,自引:0,他引:2  
建立了鸡肉中盐霉素、甲基盐霉素、莫能菌素、拉沙里菌素、马杜拉霉素、氯羟吡啶、氨丙啉、乙氧酰胺苯甲酯、4,4-二硝基均二苯脲、常山酮、克拉珠利、甲苄喹啉、癸氧喹酯、二硝托胺、地克珠利、硝米特、甲苯三嗪酮、甲苯三嗪酮砜、甲苯三嗪酮亚砜及阿克洛胺等20种抗球虫药物的定量测定方法.用乙腈萃取鸡肉中的抗球虫类药物残留,乙腈饱和正己烷脱脂,硅胶柱净化,浓缩,以Acquity BEH C18色谱柱为分离柱,液相色谱串联质谱仪测定,正/负离子分段扫描.测定限为0.005~0.05 mg/kg,在3个添加水平上进行回收实验,平均回收率为84.8%~105.0%;相对标准偏差为1.5%~10.6%.本方法简便、快速、准确,各项技术指标满足国内外法规的要求,可用于鸡肉样品中抗球虫类药物多残留的定量测定.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号