首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ji J  Deng C  Shen W  Zhang X 《Talanta》2006,69(4):894-899
In this work, portable gas chromatography-microflame ionization detection (portable GC-μFID) coupled to headspace solid-phase microextraction (HS-SPME) was developed for the field analysis of benzene, toluene, ethylbenzene and xylene (BTEX) in water samples. The HS-SPME parameters such as fiber coating, extraction times, stirring rate, the ratio of headspace volume to sample volume, and sodium chloride concentration were studied. A 65 μm poly(dimethylsiloxane)-divinylbenzene (PDMS-DVB) SPME fiber, 900 rpm, 3.0 ml of headspace (1.0 ml water sample in 4.0 ml vial), and 35% sodium chloride concentration (w/v) were respectively chosen for the best extraction response. An extraction time of 1.0 min was enough to extract BTEX in water samples. The relative standard deviation (R.S.D.) for the procedure varied from 5.4% to 8.3%. The method detection limits (MDLs) found were lower than 1.5 μg/l, which was enough sensitive to detect the BTEX in water samples. The optimized method was applied to the field analysis of BTEX in wastewater samples. These experiment results show that portable GC-μFID combined with HS-SPME is a rapid, simple and effective tool for field analysis of BTEX in water samples.  相似文献   

2.
The applicability of headspace liquid-phase microextraction and gas chromatography is evaluated for the expeditious and reliable screening of tap and drinking water samples for selected volatile organic compounds (viz., benzene, toluene, ethylbenzene, and xylene isomers, BTEX). The method uses 3.5 microL of n-hexadecane as extraction solvent, 10 min extraction time with stirring at 1250 rpm, at 20 degrees C and 0.38 g/mL salt addition. The enrichment factors of this method are from 135 to 213. Limits of detection are in the range of 4.1-23.5 ng/L. The relative standard deviations at 0.05, 50, 200, and 400 microg/L of spiking levels are in the range of 0.61%-4.01%. Recoveries of six BTEX from drinking water at these spiking levels are between 95.4% and 104.4%.  相似文献   

3.
Gold wire was coated with polypyrrole (PPY) by electropolymerization and used as a solid-phase microextraction (SPME) fiber. The adsorptive property of the coating was modified by doping with tetrasulfonated nickel phthalocyanine (NiPcTS). The efficiency and reliability of this fiber was investigated for the extraction of BTEX compounds from the headspace of water samples. Monitoring of extraction efficiency was performed by capillary GC-FID. Effects of several factors such as electropolymerization time, salt addition, exposure time and stirring speed on extraction efficiency were studied. The calibration graphs were linear in the range of 0.06 to 50 ng mL?1 and the detection limits for BTEX compounds were 20–50 pg mL?1. Comparing the results obtained using these fibers with results reported in the literature with polydimethylsiloxane (PDMS) fibers shows that under optimum conditions, the detection limits are comparable.  相似文献   

4.
吴金浩  王召会  王摆  周遵春  王年斌 《色谱》2013,31(12):1218-1223
利用顶空固相微萃取(HS-SPME)与气相色谱-质谱(GC-MS)联用建立了测定海洋沉积物中的苯、甲苯、乙苯、对二甲苯、间二甲苯、邻二甲苯以及苯乙烯等7种常见苯系物的检测分析方法。对无机盐的加入、平衡时间、萃取温度、萃取时间、解吸温度和时间等多个固相微萃取条件以及色谱条件进行了优化,内标法定量。结果表明:在0.500~20.0 ng/g范围内7种苯系物的线性关系良好,相关系数在0.995~0.999之间;方法检出限为0.0818~0.175 ng/g(干重);日内和日间重现性较好,相对标准偏差分别为1.2%~3.6%(n=5)和0.4%~6.3%(n=3);在每1.00 g海洋沉积物样品中2.0和15.0 ng加标水平下,平均加标回收率分别为61.7%~79.5%和77.1%~85.6%,相对标准偏差分别为5.4%~9.6%和3.9%~7.6%(n=5)。该方法快速、灵敏、简便,准确度高,重现性好,适合海洋沉积物样品中苯系物的痕量分析。  相似文献   

5.
Summary Extra-fine powdered activated charcoal has been used as stationary phase (coating layer) in solid-phase microextraction (SPME). The efficiency and reliability of the prepared device have been investigated for the extraction of some volatile organic compounds such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) from the headspace of water samples. Monitoring of the extracted compounds and further quantitative analysis of the real samples have been performed by capillary GC-FID. Effects of several factors such as temperature, addition of salt, and stirring speed on extraction efficiency and exposure time have been studied. Under optimum conditions, extraction recoveries for these compounds from 50 mL water were >95%. The calibration graphs were linear in the range 5 to 104 pg mL−1 and the detection limit for each BTEX compound was 1.5–2 pg mL−1. The results obtained by use of this porous layer activated charcoal (PLAC)-coated fiber have also been compared with results reported in the literature by use of a polydimethylsiloxane (PDMS)-coated fiber. Presented at the 21st ISC held in Stuttgart, Germany, 15th–20th September, 1996  相似文献   

6.
Wan C  Harrington Pde B  Davis DM 《Talanta》1998,46(5):1169-1179
A tubular silicone membrane interface has been developed for trace detection of benzene, toluene, ethyl benzene, and xylene (BTEX) compounds in water with a portable ion mobility spectrometer. Effects of flow rate, membrane length and stirring conditions on the IMS signals have been systematically investigated. Besides conventional dynamic mode operation, static mode sampling has been demonstrated for the first time and high sensitivities were achieved by sampling of BTEX contaminated water with static mode operation. A toluene concentration of 0.101 mg l(-1) in purified water, corresponding to a headspace concentration of 2.75 (mug m(-3)), was determined by static mode sampling. Headspace sampling without the membrane interface could not detect toluene at this concentration. This method has high sensitivity for trace concentrations of gasoline components in river water with a response time of several seconds. The apparatus developed is portable and can be used for sensitive detection of organic contaminants in water, with improved performance compared to conventional modes of IMS sampling.  相似文献   

7.
Microwave-assisted thermal desorption (MAD) coupled to headspace solid-phase microextraction (HS-SPME) has been studied for in-situ, one-step, sample preparation for PAHs collected on XAD-2 adsorbent, before gas chromatography with mass spectrometric detection. The PAHs on XAD-2 were desorbed into the extraction solution, evaporated into the headspace by use of microwave irradiation, and absorbed directly on a solid-phase microextraction fiber in the headspace. After desorption from the SPME fiber in the hot GC injection port, PAHs were analyzed by GC–MS. Conditions affecting extraction efficiency, for example extraction solution, addition of salt, stirring speed, SPME fiber coating, sampling temperature, microwave power and irradiation time, and desorption conditions were investigated. Experimental results indicated that extraction of 275 mg XAD-2, containing 10–200 ng PAHs, with 10-mL ethylene glycol–1 mol L−1 NaCl solution, 7:3, by irradiation with 120 W for 40 min (the same as the extraction time), and collection with a PDMS–DVB fiber at 35 °C, resulted in the best extraction efficiency. Recovery was more than 80% and RSD was less than 14%. Optimum desorption was achieved by heating at 290 °C for 5 min. Detection limits varied from 0.02 to 1.0 ng for different PAHs. A real sample was obtained by using XAD-2 to collect smoke from indoor burning of joss sticks. The amounts of PAHs measured varied from 0.795 to 2.53 ng. The method is a simple and rapid procedure for determination of PAHs on XAD-2 absorbent, and is free from toxic organic solvents.  相似文献   

8.
单环芳烃苯、甲苯、乙苯和二甲苯(简称BTEX)是石油的重要组分,也是环境中需要重点监测的致癌污染物。本实验建立了动态顶空(吹扫捕集)和光离子化检测器的气相色谱测量海水、沉积物中痕量BTEX的方法。在120—1200ng/L的浓度范围,苯、甲苯、乙苯、间对二甲苯及邻二甲苯标准溶液的检出限分别为6.4、35.2、15.8、12.3、10.7ng/L,相对标准偏差0.9%-6.1%。样品无需预处理,海水中BTEX回收率为93.50%-98.40%。7个渤海表层海水样品中BTEX的浓度均低于140ng/L;海底沉积物中苯、甲苯、乙苯、间对二甲苯及邻二甲苯浓度分别为169—1243、531—1732、1308—5624、237—1136、510—5194ng/L。测量方法和结果对评价环境污染具有重要意义。  相似文献   

9.
A novel titania sol-gel coating, including tetrabutyl orthototitanat (TBOT) as initial alkoxide, triethanolamine (TEA) as stabilizer, nitric acid as acid catalyst, and polyethylene glycol (PEG, 6000) as binder was prepared for the first time on an anodized aluminium wire and subsequently applied to headspace solid phase microextraction (HS-SPME) of benzene, toluene, ethylbenzene and xylenes (BTEX) with gas chromatography flame ionization detection (GC-FID). The analytical characteristics of the proposed porous titania sol-gel derived TBOT/PEG/TEA (41.6:16.0:42.4) fiber were comparable with reported fibers. The extraction temperature, extraction time, effect of salt addition, desorption temperature and desorption time were optimized. Under the optimized conditions and for all BTEX components, the linearity was from 20 to 800 μg L−1, the RSD was below 8.2% and limit of detections (LODs) were between 5.4 and 14.8 μg L−1. The recovery values were from 86.7% to 94.2% in water samples. The proposed HS-SPME-GC-FID method was successfully applied for the analysis of BTEX compounds from petrochemical wastewater samples.  相似文献   

10.
韩东强  马万云  陈瓞延 《分析化学》2006,34(10):1361-1365
苯、甲苯、乙苯和二甲苯(简称BTEX)等单环芳烃是石油的重要组分。在油气地球化学勘查领域,BTEX是油气藏信息的直接指示物。BTEX具有挥发性,并且可以受到微生物的降解作用,直接影响到BTEX含量的准确测量。本研究建立了动态顶空(吹扫捕集)和光离子化检测器(PID)的气相色谱测量海水基样品中BTEX的生物降解方法。苯、甲苯、乙苯、对间二甲苯及邻二甲苯的检出限分别为7.3、8.1、11.4、8.3、13.2ng/L;1μg/L海水样品中BTEX回收率为92.84%~100.92%。样品无需预处理。BTEX生物降解规律对海洋油气地球化学勘探中所涉及的样品采集、运输、保存、测量及结果分析具有重要指导意义。  相似文献   

11.
Benzene, toluene, ethylbenzene, and xylenes (BTEX) are commonly found in crude oil and are used in geochemical investigations as direct indicators of the presence of oil and gas. BTEX are easily volatile and can be degraded by microorganisms, which affect their precise measurement seriously. A method for determining the biodegradation process of BTEX in seabed sediment using dynamic headspace (purge and trap) gas chromatography with a photoionization detector (PID) was developed, which had a detection limit of 7.3–13.2 ng L?1 and a recovery rate of 91.6–95.0%. The decrease in the concentration of BTEX components was monitored in seabed sediment samples, which was caused by microorganism biodegradation. The results of BTEX biodegradation process were of great significance in the collection, transportation, preservation, and measurement of seabed sediment samples in the geochemical investigations of oil and gas.  相似文献   

12.
A novel design of solid phase microextraction fiber containing carbon nanotube reinforced sol-gel which was protected by polypropylene hollow fiber (HF-SPME) was developed for pre-concentration and determination of BTEX in environmental waste water and human hair samples. The method validation was included and satisfying results with high pre-concentration factors were obtained. In the present study orthogonal array experimental design (OAD) procedure with OA(16) (4(4)) matrix was applied to study the effect of four factors influencing the HF-SPME method efficiency: stirring speed, volume of adsorption organic solvent, extraction and desorption time of the sample solution, by which the effect of each factor was estimated using individual contributions as response functions in the screening process. Analysis of variance (ANOVA) was employed for estimating the main significant factors and their percentage contributions in extraction. Calibration curves were plotted using ten spiking levels of BTEX in the concentration ranges of 0.02-30,000ng/mL with correlation coefficients (r) 0.989-0.9991 for analytes. Under the optimized extraction conditions, the method showed good linearity (0.3-20,000ng/L), repeatability, low limits of detections (0.49-0.7ng/L) and excellent pre-concentration factors (185-1872). The best conditions which were estimated then applied for the analysis of BTEX compounds in the real samples.  相似文献   

13.
Han  Dongqiang  Ma  Wanyun  Chen  Dieyan 《Chromatographia》2007,66(11):899-904

Benzene, toluene, ethylbenzene, and xylenes (BTEX) are commonly found in crude oil and are used in geochemical investigations as direct indicators of the presence of oil and gas. BTEX are easily volatile and can be degraded by microorganisms, which affect their precise measurement seriously. A method for determining the biodegradation process of BTEX in seabed sediment using dynamic headspace (purge and trap) gas chromatography with a photoionization detector (PID) was developed, which had a detection limit of 7.3–13.2 ng L−1 and a recovery rate of 91.6–95.0%. The decrease in the concentration of BTEX components was monitored in seabed sediment samples, which was caused by microorganism biodegradation. The results of BTEX biodegradation process were of great significance in the collection, transportation, preservation, and measurement of seabed sediment samples in the geochemical investigations of oil and gas.

  相似文献   

14.
This work reports a novel method for determination of salt solubility using headspace gas chromatography. A very small amount of volatile compound (such as methanol) is added in the studied solution. Due to the molecular interaction in the solution, the vapor-liquid equilibrium (VLE) partitioning coefficient of the volatile species will change with different salt contents in the solution. Therefore, the concentration of volatile species in the vapor phase is proportional to the salt concentration in the liquid phase, which can be easily determined by headspace gas chromatography. Until the salt concentration in the solution is saturated, the concentration of volatile compound in the vapor phase will continue to increase further and a breakpoint will appear on the VLE curve. The solubility of the salts can be determined by the identification of the breakpoint. It was found that the measured solubility of sodium carbonate and sodium sulfate in aqueous solutions is slightly higher (about 6-7%) than those reported in the literature method. The present method can be easily applied to industrial solution systems.  相似文献   

15.
A comparison is made between static headspace analysis and headspace solid-phase dynamic extraction (HS-SPDE) for the quantitative determination of trace level BTEX solvents (benzene, toluene, ethylbenzene and o-, m-, and p-xylene) in soft drinks. Two non-polar extraction phases were investigated for SPDE using an automated sampler with a gas-tight syringe equipped with a special needle coated on the inside with the extraction phase. Following adsorption onto the phase, the analytes were thermally desorbed directly into a GC-MS. The techniques were optimised and evaluated by analysis of spiked soft drink samples. The use of the SPDE device gave comparable results to the static headspace method, with lower detection limits for some compounds, and also offers advantages for applications where lower temperatures are preferred.  相似文献   

16.
A method for determination of benzene, toluene, ethylbenzene, and xylenes (BTEX) in urine is described. Determination is performed by dynamic headspace (purge and trap) gas chromatography with photoionization detection. The features of the described method, i.e. detection limits of 15–35 ng L–1, relative standard deviations of 0.2–10%, accuracy of 80–100%, removal of interference of many compounds present in urine, sharp chromatographic peaks because of cryogenic refocusing, no sample preparation, make it convenient for biological monitoring of exposure to low levels of BTEX. However, the method is time‐consuming and sophisticated.  相似文献   

17.
The directly suspended droplet microextraction (DSDME) technique coupled with the capillary gas chromatography-flame ionization detector (GC-FID) was used to determine BTEX compounds in aqueous samples. The effective parameters such as organic solvent, extraction time, microdroplet volume, salt effect and stirring speed were optimized. The performance of the proposed technique was evaluated for the determination of BTEX compounds in natural water samples. Under the optimal conditions the enrichment factors ranged from 142.68 to 312.13, linear range; 0.01-20 μg mL−1, limits of detection; 0.8-7 ng mL−1 for most analytes. Relative standard deviations for 0.2 μg mL−1 of BTEX in water were in the range 1.81-2.47% (n = 5). The relative recoveries of BTEX from surface water at spiking level of 0.2 μg mL−1 were in the range of 89.87-98.62%.  相似文献   

18.
In this work, a new solid-phase microextraction fiber was prepared based on nitrogen-doped graphene (N-doped G). Moreover, a new strategy was proposed to solve problems dealt in direct coating of N-doped G. For this purpose, first, Graphene oxide (GO) was coated on Pt wire by electrophoretic deposition method. Then, chemical reduction of coated GO to N-doped G was accomplished by hydrazine and NH3. The prepared fiber showed good mechanical and thermal stabilities. The obtained fiber was used in two different modes (conventional headspace solid-phase microextraction and cold-fiber headspace solid-phase microextraction (CF-HS-SPME)). Both modes were optimized and applied for the extraction of benzene and xylenes from different aqueous samples. All effective parameters including extraction time, salt content, stirring rate, and desorption time were optimized. The optimized CF-HS-SPME combined with GC-FID showed good limit of detections (LODs) (0.3–2.3 μg/L), limit of quantifications (LOQs) (1.0–7.0 μg/L) and linear ranges (1.0–5000 μg/L). The developed method was applied for the analysis of benzene and xylenes in rainwater and some wastewater samples.  相似文献   

19.
A simple and fast method has been developed for the determination of benzene, toluene and the mixture of ethylbenzene and xylene isomers (BTEX) in soils. Samples were introduced in 10 mL standard glass vials of a headspace (HS) autosampler together with 150 μL of 2,6,10,14-tetramethylpentadecane, heated at 90 °C for 10 min and introduced in the mass spectrometer by using a transfer line heated at 250 °C as interface. The volatile fraction of samples was directly introduced into the source of the mass spectrometer which was scanned from m/z 75 to 110. A partial least squares (PLS) multivariate calibration approach based on a classical 33 calibration model was build with mixtures of benzene, toluene and o-xylene in 2,6,10,14-tetramethylpentadecane for BTEX determination. Results obtained for BTEX analysis by HS-MS in different types of soil samples were comparables to those obtained by the reference HS-GC-MS procedure. So, the developed procedure allowed a fast identification and prediction of BTEX present in the samples without a prior chromatographic separation.  相似文献   

20.
A new solvent-free analytical procedure based on headspace solid-phase microextraction (SPME) coupled to gas chromatography employing an electron capture detector (GC/ECD) or alternatively a mass spectrometric detector (GC/MSD) has been developed for the determination of phthalic acid esters (dimethyl-[DMP], diethyl-[DEP], di-n-butyl-[DnBP], butylbenzyl-[BBP], di-2-ethylhexyl-[DEHP] and di-n-octyl [DnOP] phthalate) in vegetable oils. Four different fiber coatings were evaluated, among them polydimethylsiloxane with a thickness of 100 μm appeared to be the best choice for allowing extraction of the whole group of analytes. Various solvents were tested as sample matrix modification agents with the aim to facilitate the transfer of esters with low vapour pressure (DEHP and DnOP) from oil matrix into the headspace. The addition of methanol resulted in optimal set-up applicable for all phthalate esters. Temperature control and the way of sample stirring were recognized as critical points of the whole procedure. Primarily, because shaking rather than stirring of the sample is carried out using a CombiPal multipurpose sampler, the automation of the SPME method employing this instrument was found to be not fully suitable for efficient stripping of phthalates from the oil matrix into the sample headspace. Nevertheless, the optimized manual SPME method, encompassing GC/ECD or GC/MSD for the separation and detection of target analytes, offers a unique solution and showed acceptable performance characteristics: linear response in the range of 0.5-2 mg kg−1 and repeatability expressed as R.S.D. between 14 and 23% at the spiking level of 2 mg kg−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号