首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solution of the problem of the axisymmetric motion of an ideal incompressible fluid in a cylindrical vessel of finite depth is obtained for small vibrations of a flexible circular disk and washer (disk with centered hole) on the surface of the fluid. On the basis of this solution the virtual mass is determined as a function of the dimensions of the vessel, disk and washer for the special case of a rigid nondeformable disk and washer.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 103–111, January–February, 1995.  相似文献   

2.
In this article an analytical solution of equations of motion of a rigid disk of finite thickness rolling on its edge on a perfectly rough horizontal plane under the action of gravity is given. The solution is given in terms of Gauss hypergeometric functions. The integrability results are used to construct various bifurcation diagrams of the steady motion of the disk. The bifurcations of the steady motion of a disk on a rough plane complements the author's bifurcation analysis of the steady motion of the disk on a smooth plane ( [M. Batista, Steady motion of a rigid disk of finite thickness on a horizontal plane, Int. J. Non-Linear Mech. 41 (4) (2006) 605–621]).  相似文献   

3.
Jianjun  Feng  Benzhao  Zhang  Wangyi  Wu 《Acta Mechanica Sinica》1995,11(4):307-317
This paper presents an infinite series solution to the creeping flow equations for the axisymmetric motion of a sphere of arbitrary size rotating in a quiescent fluid around the axis of a circular orifice or a circular disk whose diameters are either larger or smaller than that of the sphere. Numerical tests of the convergence are passed and the comparison with the exact solution and other computational results shows an agreement to five significant figures for the torque coefficients in both cases. The torque coefficients are obtained for the sphere located up to a position tangent to the wall plane containing either the orifice or the disk. It is concluded that the torque coefficients of the sphere and the disk are monotonically increasing with the decrease of the distance from the disk or the orifice plane in both cases.  相似文献   

4.
The steady rotation of a disk of infinite radius in a conducting incompressible fluid in the presence of an axial magnetic field leads to the formation on the disk of a three-dimensional axisymmetric boundary layer in which all quantities, in view of the symmetry, depend only on two coordinates. Since the characteristic dimension is missing in this problem, the problem is self-similar and, consequently, reduces to the solution of ordinary differential equations.Several studies have been made of the steady rotation of a disk in an isotropically conductive fluid. In [1] a study was made of the asymptotic behavior of the solution at a large distance from the disk. In [2] the problem is linearized under the assumption of small Alfven numbers, and the solution is constructed with the aid of the method of integral relations. In the case of small magnetic Reynolds numbers the problem has been solved by numerical methods [3,4]. In [5] the method of integral relations was used to study translational flow past a disk. The rotation of a weakly conductive fluid above a fixed base was studied in [6,7], The effect of conductivity anisotropy on a flow of a similar sort was studied approximately in [8], In the following we present a numerical solution of the boundary-layer problem on a disk with account for the Hall effect.  相似文献   

5.
The paper represents results of an exact solution of a laminar heat transfer problem for a rotating disk in a fluid co-rotating with the disk as a solid body. The angular speed of the fluid is less than the angular speed of the disk. Disks surface temperature varies radially accordingly to a power law. Results for the laminar regime are compared with computations for turbulent heat transfer obtained using an integral method developed earlier. On the basis of the exact solution for laminar flow and basic ideas of the integral methods solution for turbulent flow, an integral method for laminar regime is designed and an approximate analytical solution of the considered problem is derived. Inaccuracies of the laminar approximate solution over the main range of variation of the influencing parameters and Prandtl numbers from 0.71 to 1 do not exceed 2.5%. It is shown that the dependence of the Nusselt number on the ratio of the angular speeds of disk and fluid varying from 0 to 0.3 is weak and has a point of maximum within this region for laminar flow. The obtained results are important in predictions of fluid flow and heat transfer in different types of rotating machinery.  相似文献   

6.
Summary The solution of the time dependent flow due to the impulsive starting of a single infinite disk from rest is obtained numerically for the entire history of the transient. The primary tangential velocity exhibits a single overshoot of its steady value while the growth of the secondary flows is monotonic. The overshoot is seen to be a direct consequence of the lag in the development of the secondary flows. An analytical solution is obtained for a related linearized problem: The angular velocity of an infinite disk, initially rotating with an infinite environment, is perturbed. The oscillatory decays to the steady state, which occur in both unbounded and bounded linearized analyses, are discussed in relation to the overshoot in the impulsively started disk problem.  相似文献   

7.
The static solution to the problem of a layer bonded to an elastic half-space, where the layer is driven by the torsional rotation of a bonded rigid circular disk, is considered here. An iterative solution, perturbing on that given for the elastic half-space, is obtained as a convergent power series, provided the ratio of the stratum depth to the radius of the disk is large. An equation for the applied static torque at the surface of the rigid disk is also calculated and compared, under limiting cases, with known results.  相似文献   

8.
The unsteady hydromagnetic flow due to non-coaxial rotations of a porous disk with slip condition and a fluid at infinity has been studied on taking Hall currents into account. An exact solution of the governing equation has been obtained by the Laplace transform technique. Asymptotic solution is obtained for large time. It is found that for large time there exists a thin boundary layer near the disk. The thickness of this layer decreases with increase in either suction or magnetic parameter.  相似文献   

9.
This paper considers the plastic limit state of a thin hollow axisymmetric disk subjected to thermomechanical loading with a uniform pressure distribution on the inner contour and a temperature increasing during deformation. A semi-analytical solution of the formulated boundary-value problem is obtained. Qualitative features of the behavior of the solution with a loss of the load-carrying capacity of the disk are investigated.  相似文献   

10.
Three-dimensional incompressible Reynolds-averaged Navier–Stokes (RANS) computations are performed for water flow past an actuator disk model (representing a tidal turbine) placed in a rectangular channel of various blockages and aspect ratios. The study focuses on the effects of turbulent mixing behind the disk, as well as on the effects of channel blockage and aspect ratio on the prediction of the hydrodynamic limit of power extraction. To qualitatively account for the effect of turbulence generated by the turbine (rather than by the shear flow behind the turbine), we propose a new approach, called a blade-induced turbulence model, which does not use any additional model coefficients other than those used in the original RANS turbulence model. Results demonstrate that the power removed from the mean flow by the disk increases as the strength of turbulent mixing behind the disk increases, being consistent with the turbulent shear stress on the interface between the bypass and core flow passages acting in such a way as to decelerate the bypass flow and accelerate the core flow. The channel aspect ratio also affects the flow downstream of the disk but has less influence upstream of the disk; hence its effect on the limit of power extraction is relatively minor compared to that of the channel blockage, which is shown to be significant but satisfactorily estimated using one-dimensional inviscid theory previously reported in the literature.  相似文献   

11.
M. Guria  B. K. Das  R. N. Jana 《Meccanica》2007,42(5):487-493
An analytical solution of the unsteady Navier–Stokes equations is obtained for the flow due to non-coaxial rotations of an oscillating porous disk and a fluid at infinity, rotating about an axis parallel to the axes of rotation of the disk through a fixed point. The velocity distributions and the shear stresses at the disk are obtained for three different cases when the frequency parameter is greater than, equal to or less than the rotation parameter. The flow has a boundary layer structure even in the case of blowing at the disk.  相似文献   

12.
International Applied Mechanics - Explicit analytical solution to the problem of the strain–stress state of a narrow multilayer disk with a radial alternation of layers is presented. The disk...  相似文献   

13.
Steady two-dimensional free-surface flows of an inviscid incompressible fluid are studied here, using the complex potential theory. The first flow is a uniform free stream flow in a channel of finite depth. The second is similar, but terminated abruptly as a downstream flow exiting into a falling jet, with and without the effect of gravity. These problems have already been solved for polygonal walls. This paper presents an iterative process for computing flows over arbitrarily shaped channels, with and without the presence of a waterfall at the exit. This process is based on the solution of a mixed boundary problem in the unit disk. The method emphasizes the correspondence between the walls in the physical plane and in the unit disk. The numerical data agree with previously published results and extend them to arbitrary curved walls. This method yields solutions only for supercritical flows.  相似文献   

14.
The possibility of using a high-temperature current layer initiated in a plasma flow as a powerful source of light with a wide range of emission is demonstrated. The study was performed on a setup with a disk MHD channel in the regime of TC layer generation in argon and sodium plasma flows.  相似文献   

15.
Abstract

The displacement field and strain distribution in a thin rotating disk with constant thickness and density are found based on Mises’ yield criterion and its associated flow rule. The material of the disk is elastic-perfectly plastic and the assumption of plane stress is adopted. The solution is illustrated by an example.  相似文献   

16.
The flow of a nonlinearly viscous (power-law) fluid over the surface of a rotating flat disk is investigated. A solution form which makes it possible to reduce the complete system of partial differential equations to a system of ordinary differential equations is found. This system is integrated using the Runge-Kutta method and reduction to a Cauchy problem on the basis of Newton's method. The velocity and pressure fields in a power-law fluid film flowing over the surface of a rotating flat disk are found numerically.  相似文献   

17.
A formulation in terms of a Fredholm integral equation of the first kind is given for the axisymmetric problem of a solid rotating in a bounded viscous fluid whose surface is contaminated with an immiscible surfactant film. The particular case of a rotating thin circular disk immersed in a semi-infinite body of fluid is studied in detail, the problem being reduced to the solution of a Fredholm integral equation of the second kind. This equation is solved both asymptotically and numerically, and the resistive torque on the disk and surface velocity profiles are computed for varying values of the ratio of the coefficient of surface shear viscosity to the coefficient of viscosity of the substrate fluid, and depth of the disk below the surface.  相似文献   

18.
The forced vibration analysis of nonhomogeneous thermoelastic, isotropic, thin annular disk under periodic and exponential types of axisymmetric dynamic pressures applied on its inner boundary has been performed and analytical benchmark solution has been obtained. The material has been assumed to have inhomogeneity according to a simple power law in the radial coordinate. The present analysis has been worked out in the context of generalized theory of thermoelasticity with one relaxation time. The two coupled partial differential equations have been clubbed and solved by employing Laplace transform technique to obtain the solution for radial displacement and temperature change in the space domain. In order to obtain the solution in physical domain, the inversion of the transform has been carried out by using residue calculus. The radial displacement, radial stress, circumferential stress, and temperature change have been computed numerically for copper material annular disk. The numerically computed results have been presented graphically to demonstrate the effect of two different types of dynamic pressure in reference to homogeneous and nonhomogeneous material disk. The results for homogeneous material disk have been deduced and validated with that available in literature. The closed-form solution obtained here is interesting and allows further parametric studies of nonhomogeneous structures.  相似文献   

19.
The magnetohydrodynamic (MHD) flow induced by non‐coaxial rotation of porous disk and a third grade fluid at infinity is investigated. The disk is moving with uniform acceleration and rotating with a uniform angular velocity. Numerical solution of the governing nonlinear initial and boundary value problem is obtained. The effects of physical parameters on the velocity profiles are examined in detail. The present study shows that the constant acceleration part has a greater influence than the time part of the assumed variable velocity of the disk. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
An analytic solution is presented for stresses induced in an elastic and isotropic disk by an eccentric press-fitted circular inclusion. The disk is also subject to uniform normal stress applied at its outer border. The inclusion is assumed to be of the same material as the annular disk and both elements are in a plane stress or plane strain state. A frictionless contact condition is assumed between the two members. The solution is obtained by using the general expression for a biharmonic stress function in bipolar coordinates. The results show that the maximum of the von Mises effective stress due to the inclusion interference occurs in the ligament for large eccentricity, but it deviates from the symmetry axis for small eccentricity. Moreover, along the border of the circular inclusion the hoop stress locally coincides with the contact pressure, in agreement with a similar classical result valid for a half plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号