首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the first time, headspace solid-phase microextraction coupled with GC-MS analysis was used to study volatile compounds emitted by the tick Ixodes ricinus (L.). Variables such as the type of SPME fibre, equilibration time and extraction time have been evaluated with the mixture of four selected standards, a so-called artificial tick (acetophenone, racemic 4-heptanolide, methyl 2-methoxybenzoate and methyl 3-chloro-4-methoxybenzoate). Optimized conditions were obtained by the use of polydimethylsiloxan 100 microm fibre at 30 min equilibration and 15 min extraction time. The method proved to have a good linearity (r2 >0.98) at a concentration range from 0.5 ng (1 ng for methyl 3-chloro-4-methoxybenzoate) to 25 ng. LODs for a compound ranged between 0.19 and 1 ng, RSD (%) ranged from 13.76 to 25.08. The determination of 1.99 ng of methyl 3-chloro-4-methoxybenzoate emitted by five engorged females proved the usefulness of the developed method to identify and quantify the volatile compounds emitted by I. ricinus ticks.  相似文献   

2.
A solid-phase microextraction (SPME) method for the determination of triclosan, methyl triclosan, 2,4-dichlorophenol and 2,3,4-trichlorophenol (considered as possible triclosan metabolites) in water samples was optimised. Analytes were first concentrated on a SPME fibre, directly exposed to the sample, and then triclosan and the two chlorinated phenols on-fibre silylated using N-methyl-N-(tert.-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA). Methyl triclosan remained unaffected during the derivatization step. Compounds were determined using gas chromatography in combination with mass spectrometry (GC-MS). Influence of different factors on the efficiency of extraction and derivatization steps was systematically investigated. Using a polyacrylate (PA) fibre quantification limits below 10 ng/l, and acceptable relative standard deviations, were obtained for all compounds after an extraction time of 30 min. On-fibre silylation was carried out in only 10 min. Moreover, the efficiency of the procedure was scarcely affected by the type of water sample. The method was applied to several samples of treated and raw wastewater, triclosan was found in all samples, at concentrations from 120 to 14,000 ng/l, and 2,4-dichlorophenol in most of them, at levels up to 2222 ng/l.  相似文献   

3.
The analysis of samples contaminated by organic compounds is an important aspect of environmental monitoring. Because of the complex nature of these samples, isolating target organic compounds from their matrices is a major challenge. A new isolation technique, solid phase microextraction, or SPME, has recently been developed in our laboratory. This technique combines the extraction and concentration processes into one step; a fused silica fiber coated with a polymer is used to extract analytes and transfer them into a GC injector for thermal desorption and analysis. It is simple, rapid, inexpensive, completely solvent-free, and easily automated. To minimize matrix interferences in environmental samples, SPME can be used to extract analytes from the headspace above the sample. The combination of headspace sampling with SPME separates volatile and semi-volatile analytes from non-volatile compounds, thus greatly reducing the interferences from non-target compounds. This paper reports the use of headspace SPME to isolate volatile organic compounds from various matrices such as water, sand, clay, and sludge. By use of the technique, benzene, toluene, ethyl-benzene, and xylene isomers (commonly known as BTEX), and volatile chlorinated compounds can be efficiently isolated from various matrices with good precision and low limits of detection. This study has found that the sensitivity of the method can be greatly improved by the addition of salt to water samples, water to soil samples, or by heating. Headspace SPME can also be used to sample semi-volatile compounds, such as PAHs, from complex matrices.  相似文献   

4.
Ma J  Xiao R  Li J  Li J  Shi B  Liang Y  Lu W  Chen L 《Journal of separation science》2011,34(12):1477-1483
A simple, fast, sensitive and cost-effective method based on headspace solid-phase microextraction (HS-SPME) with on-fiber derivatization coupled with gas chromatography-mass spectrometry was developed for the determination of six typical aldehydes, 2E-hexenal, heptanal, 2E-heptenal, 2E,4E-heptadienal, 2E-decenal and 2E,4E-decadienal in laboratory algae cultures. As derivatization reagent, O-2,3,4,5,6-(pentafluorobenzyl) hydroxylamine hydrochloride, was loaded onto the poly(dimethylsiloxane)/divinylbenzene fiber for aldehydes on-fiber derivatization prior to HS-SPME. Various influence factors of extraction efficiency were systematically investigated. Under optimized extraction conditions, excellent method performances for all the six aldehydes were attained, such as satisfactory extraction recoveries ranging from 67.1 to 117%, with the precision (relative standard deviation) within 5.3-11.1%, and low detection limits in the range of 0.026-0.044 μg/L. The validated method was successfully applied for the analysis of the aldehydes in two diatoms (Skeletonema costatum and Chaetoceros muelleri), two pyrrophytas (Prorocentrum micans and Scrippsiella trochoidea) and Calanus sinicus eggs (feeding on the two diatoms above).  相似文献   

5.
固相微萃取-气相色谱/质谱联用分析室内空气中的苯系物   总被引:1,自引:1,他引:1  
自制了一种固相微萃取采样装置,建立了固相微萃取-气相色谱/质谱(SPME-GC/MS)联用测定室内空气中苯系物的分析方法。方法的线性范围为1~300μg/m3,检出限为0.1~0.3μg/m3,RSD(n=6)3.2%~15%。采用该方法研究了广州市内20户新装修民居中苯、甲苯、乙苯、对二甲苯和1,3,5-三甲苯的含量及分布,并探讨了苯系物的来源。  相似文献   

6.
A simple and sensitive method was developed for the simultaneous separation and determination of trace earthy-musty compounds including geosmin, 2-methylisoborneol, 2-isobutyl-3-methoxypyrazine, 2-isopropyl-3-methoxypyrazine, 2,3,4-trichloroanisole, 2,4,6-trichloroanisole, and 2,3,6-trichloroanisole in water samples. This method combined headspace solid-phase microextraction (HS-SPME) with gas chromatography-mass spectrometry and used naphthalene-d(8) as internal standard. A divinylbenzene/carboxen/polydimethylsiloxane fiber exposing at 90°C for 30 min provided effective sample enrichment in HS-SPME. These compounds were separated by a DB-1701MS capillary column and detected in selected ion monitoring mode within 12 min. The method showed a good linearity from 1 to 100 ng L(-1) and detection limits within (0.25-0.61 ng L(-1)) for all compounds. Using naphthalene-d(8) as the internal standard, the intra-day relative standard deviation (RSD) was within (2.6-3.4%), while the inter-day RSD was (3.5-4.9%). Good recoveries were obtained for tap water (80.5-90.6%), river water (81.5-92.4%), and lake water (83.5-95.2%) spiked at 10 ng L(-1). Compared with other methods using HS-SPME for determination of odor compounds in water samples, this present method had more analytes, better precision, and recovery. This method was successfully applied for analysis of earthy-musty odors in water samples from different sources.  相似文献   

7.
Shi Shu 《Talanta》2010,82(5):1884-1891
Dynamic gas sampling using solid phase microextraction (SPME) was evaluated for recovery of reactive terpenes and terpenoids in the presence of ozone. For limonene, α-terpineol and dihydromyrcenol in the 20-60 ppb range, this method achieves >80% recovery for ozone mixing ratios up to 100 ppb. Both the experimental results and a model analysis indicate that higher ozone concentrations and longer sampling times result in lower percent recovery. Typically greater than 90% recovery and ppb level method detection limits were achieved with a 5 min sample time. Increasing the flow rate from 100 to 400 sccm flow (5-20 cm s−1) through the active sampler did not significantly affect sensitivity or recovery in most cases, probably due to negligible mass-transfer improvements. The recovery for each compound improves when sampling from a mixture of different species than that from a single compound sample. This may be due to competition for ozone amongst adsorbed species. Dynamic SPME sampling can improve detection and quantification of terpenes in reactive environments, especially for low vapor pressure (<5 mm Hg at 25 °C) compounds that can be adsorbed to ozone scrubbers used in other methods.  相似文献   

8.
The aim of this study was the optimization of headspace SPME conditions for trapping diterpenes present in frankincense (olibanum). Diterpenes like cembrenes or incensole and its derivatives are characteristic of olibanum. So in order to detect by SPME the occurrence of olibanum in archeological objects, it appears essential to have the best extraction conditions for these diterpenes that will be in very small quantities. Both sampling time and extraction temperature were studied and five fiber coatings were tested: polydimethylsiloxane (PDMS), polydimethylsiloxane/divinylbenzene (PDMS/DVB), carboxen/polydimethylsiloxane (CAR/PDMS), divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) and carbowax/divinylbenzene (CW/DVB). The PDMS/DVB fiber was found to be the most efficient for trapping olibanum characteristic diterpenes, with a sampling time of 1 h and a sampling temperature of 80 degrees C.  相似文献   

9.
The analysis of the acaricide fenbutatin oxide (FBTO) having a molecular weight of 1052.66 g mol(-1) in water samples by capillary GC/MS after in-situ derivatization with sodium tetraethylborate (NaBEt4) and headspace-SPME enrichment is described. Automated SPME is performed at 80 degrees C for 30 min. Detection is carried out in the ion monitoring mode with deuterated triphenyltin (TPhTd15) as internal standard. Good linearity (R2 = 0.9993) was obtained in the dynamic range 20 to 1000 ng L(-1) with a limit of detection of 16 ng L(1) (LOD at 3 S/N) and a limit of quantitation of 50 ng L(-1) (LOQ at 10 S/N). Intra-day RSD% for n=6 was 8.9 at the LOQ level.  相似文献   

10.
A fast and simple screening procedure using solid‐phase microextraction and gas chromatography‐mass spectrometry (SPME‐GC‐MS) in full‐scan mode for the determination of volatile organic compounds (VOC) is presented. The development of a fast and simple screening technique for the simultaneous determination of various volatiles is of great importance, because of their widespread use, frequent occurrence in forensic toxicological questions and the fact that there is often no hint on involved substances at the crime scene. To simulate a screening procedure, eight VOC with different chemical characteristics were chosen (isoflurane, halothane, hexane, chloroform, benzene, isooctane, toluene and xylene). To achieve maximum sensitivity, variables that influence the SPME process, such as type of fiber, extraction and desorption temperature and time, agitation and additives were optimized by preliminary studies and by means of a central composite design. The limits of detection and recoveries ranged from 2.9 µg/l (xylene) to 37.1 µg/l (isoflurane) and 7.9% (chloroform) to 61.5% (benzene), respectively. This procedure can be used to answer various forensic and toxicological questions. The short time taken for the whole analytical procedure may make its eventual adoption for routine analysis attractive. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A headspace solid‐phase micro‐extraction (HS‐SPME) method was employed in order to study the effect of storage conditions of human urine samples spiked with tributyltin (TBT) using gas chromatography and mass spectrometry. To render the analyte more volatile, the derivatization (ethylation) was made in situ by sodium tetraethylborate (NaBEt4), which was added directly to dilute unpreserved urine samples and in buffers of similar acidity. The stability of TBT in human urine matrix was compared with the stability of TBT in buffer solutions of similar pH value. Critical parameters of storage conditions such as temperature and time, which affect the stability of TBT in this kind of matrix, were examined extensively. The tests showed that the stability of TBT remains practically satisfactory for a maximum of 2 days of storage either at +4 or 20°C. Greater variations were observed in the concentration of TBT in human urine samples at +4°C and lower ones at ?20°C over a month's storage. The freeze–thaw cycles have negative effect on the stability and should be kept to a minimum. The results from spiked urine samples are also discussed in comparison to those acquired from buffer solutions of equal TBT concentration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Mastic, the resinous exudate of the evergreen shrub Pistacia lentiscus, is frequently discussed as one of the ingredients used for embalming in ancient Egypt. We show the identification of mastic in ancient Egyptian embalming resins by an unambiguous assignment of the mastic triterpenoid fingerprint consisting of moronic acid, oleanonic acid, isomasticadienonic and masticadienonic acid through the consolidation of NMR and GC/MS analysis. Differences in the observed triterpenoid fingerprints between mummy specimens suggest that more than one plant species served as the triterpenoid resin source. Analysis of the triterpenoid acids of ancient embalming resin samples in the form of their methyl- and trimethylsilyl esters is compared. In addition we show a simple way to differentiate between residues of mastic from its use as incense during embalming or from direct mastic application in the embalming resin.  相似文献   

14.
This work has developed a miniaturized method based on matrix solid phase dispersion (MSPD) using C18 as dispersant and acetonitrile–water as eluting solvent for the analysis of legislated organochlorinated pesticides (OCPs) and polybrominated diphenylethers (PBDEs) in biota samples by GC with electron capture (GC-ECD). The method has compared Florisil®-acidic Silica and C18 as dispersant for samples as well as different solvents. Recovery studies showed that the combination of C18–Florisil® was better when using low amount of samples (0.1 g) and with low volumes of acetonitrile–water (2.6 mL). The use of SPME for extracting the analytes from the solvent mixture before the injection resulted in detection limits between 0.3 and 7.0 μg kg−1 (expressed as wet mass). The miniaturized procedure was easier, faster, less time consuming than the conventional procedure and reduces the amounts of sample, dispersant and solvent volume by approximately 10 times. The proposed procedure was applied to analyse several biota samples from different parts of the Comunidad Valenciana.  相似文献   

15.
A headspace solid-phase microextraction gas chromatography coupled with tandem mass spectrometry (HSSPME-GC-MS-MS) methodology for determination of brominated flame retardants in sediment and soil samples is presented. To the best of our knowledge, this is the first time that SPME has been applied to analyze polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) in environmental solid samples. Analyses were performed using 0.5-g solid samples moisturized with 2 mL water, employing a polydimethylsiloxane (PDMS) fiber coating, exposed to the headspace at 100 °C for 60 min. Several types of environmental solid samples were included in this study and the extraction efficiency was related to the organic matter content of the sample. Calibration was performed using real samples, and the method showed good linearity over a wide concentration range, precision, and afforded quantitative recoveries. The obtained detection limits were in the sub-ng g−1 for all the target analytes in both samples. The proposed procedure was applied to several marine and river sediments and soils, some of which were found to contain PBDEs at concentrations in the ng g−1 level; BDE-47, BDE-100, and BDE-99 were the major congeners detected. The proposed method constitutes a rapid and low-cost alternative for the analysis of the target brominated flame retardants in environmental solid samples, since the clean-up steps, fractionation, and preconcentration of extracts inherent to the classical multi-step solvent extraction procedures are avoided.   相似文献   

16.
This paper proposes a new analytical procedure based on the headspace solid‐phase microextraction (HS‐SPME) technique and gas chromatography‐selected ion monitoring‐mass spectrometry (GC‐SIM‐MS) for the determination of 16 phenols extracted from leather samples. The optimized conditions for the HS‐SPME were obtained through two experimental designs – a two‐level fractional factorial design followed by a central composite design – using the commercial SPME fiber polyacrylate 85 μm (PA). The best extraction conditions were as follows: 200 μL of derivatizing agent (acetic anhydride), 20 mL of saturated aqueous NaCl solution and extraction time and temperature of 50 min and 75°C, respectively. All optimized conditions were obtained with fixed leather sample mass (250 mg), vial volume (40 mL) and phosphate buffer pH (12) and concentration (50 mmol/L). Detection limits ranging from 0.03 to 0.20 ng/g, and relative standard deviation (RSD) lower than 10.23% (n=6) for a concentration of 800 ng/g (chlorophenols) and 1325 ng/g (2‐phenylphenol) in the splitless mode were obtained. The recovery was studied at three concentration levels by adding different amounts of phenols to the leather sample and excellent recoveries ranging from 90.0 to 107.2% were obtained. The validated method was shown to be suitable for the quantification of phenols in leather samples, as it is simple, relatively fast and sensitive.  相似文献   

17.
Gas chromatography/mass spectrometry (GC/MS) after alkaline hydrolysis, solvent extraction and trimethylsilylation, and analytical pyrolysis using hexamethyldisilazane (HMDS) for in situ derivatisation followed by gas chromatographic/mass spectrometric analysis (Pyrolysis-silylation-GC/MS) were used to investigate the hydrolysable and soluble constituents, and the polymerised macromolecules of an archaeological fig (Ficus carica) recovered in Zaragoza (Spain), as well as of modern figs. The main aim was to study the compositional alterations undergone by the fig tissues in a particular archaeological environment: the fig was in a vessel and covered by a layer of a mixture of orpiment and gypsum. A comparison between the GC/MS results from modern and archaeological figs revealed that degradative reactions took place, leading to the disappearance/depletion of reactive (unsaturated fatty acids) and sensitive compounds (phytosterols and triterpenes). Py-silylation-GC/MS data provided evidence of a significant degradation of the saccharide and lipid components of the fig tissue, which left a residue enriched in polyphenols and polyesters.  相似文献   

18.
Summary A complex method was developed for the determination of chlorobenzenes in soil and groundwater samples. Samples were taken at two sites in Baranya county, where a mixture of chlorobenzene waste was deposited, causing severe contamination in the environment. Clean-up of these sites demands modern and reliable analytical methods. Several sample preparation techniques were used, such as solid phase microextraction (SPME), supercritical fluid extraction (SFE), and a recently developed thermal desorption method. The applicability of various sample preparation methods was compared by measuring recovery percentages, relative standard deviations and by investigating the matrix dependency of these values. Gas chromatography was used for quantitative determination of chlorobenzenes, using MS, IR, FID and ECD detection techniques. Detection levels were as low as 1 ppt in water, and 10 ppt in soil samples. Chlorobenzene concentration was in the range 1 ppt-1 ppm in water and 100 ppb-100 ppm in soil samples. Identification and calibration of these compounds were performed by quantitative standards. This complex analytical method can be used for rapid and precise quantitative and qualitative determination of chlorobenzenes. Presented at: Balaton Symposium on High-Performance Separation Methods, Siófok, Hungary, September 3–5, 1997  相似文献   

19.
Solid phase microextraction (SPME) coupled with gas chromatography (GC) was used to detect terpene hydrocarbons inside shipping containers entering New Zealand. The utility of this system for the rapid detection of undeclared wood packaging for quarantine purposes was demonstrated. A portable dynamic air-sampling device was built to house a SPME fibre and allow the air from shipping containers to be sampled. The effects of sample flow rate and sampling time were investigated and sampling conditions of 100 mL/min for 30 s were chosen to keep sampling within the linear range. A CV of less than 15% (n = 12) was obtained for all the compounds analysed under these conditions. To obtain an estimate for the limit of detection (LOD) for the terpene hydrocarbons of interest, small quantities of lime oil were placed in an empty shipping container and the air inside was analysed. LOD (S/N = 3) was estimated to be in the order of 50-100 ng/L of air using GC with flame ionisation detection (GC-FID). Finally, the device was tested in fully laden containers and was shown to be effective for trapping terpene hydrocarbons indicative of wood packaging.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号