首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Pressurized liquid extraction (PLE) and pressurized hot water extraction (PHWE) using a laboratory-made system are applied for the extraction of thermally labile components such as tanshinone I and IIA in Salvia miltiorrhiza. PLE and PHWE are carried out dynamically at a flow of 1 mL/min, temperature between 95-140 degrees C, applied pressure of 10-20 bars, and extraction times of 20 and 40 min, respectively. Effects of ethanol added into the water used in PHWE are explored. PLE is found to give comparable or higher extraction efficiencies compared with PHWE with reference to Soxhlet extraction for tanshinone I and IIA in Salvia miltiorrhiza. The tanshinone I and IIA present in the various medicinal plant extracts are determined by liquid chromatography and liquid chromatography-mass spectrometry.  相似文献   

2.
Pressurized hot water extraction (PHWE, also known as subcritical water extraction) is commonly considered to be an environmentally friendly extraction technique that could potentially replace traditional methods that use organic solvents. Unfortunately, the applicability of this technique is often limited by the very low water solubility of the target compounds, even at high temperatures. In this paper, the scope for broadening the applicability of PHWE by adjusting the pH of the water used in the extraction is demonstrated in the extraction of curcumin (which exhibits very limited water solubility) from untreated turmeric (Curcuma longa L.) rhizomes. Although poor extraction yields were obtained, even at high temperatures when using degassed water or neutral phosphate buffer as the extraction medium, yields exceeding those obtained by Soxhlet extraction were achieved using highly acidic pH buffers due to curcumin protonation. The influence of the temperature, pH, and buffer concentration on the extraction yield were investigated in detail by means of a series of designed experiments. Optimized conditions for the extraction of curcumin from turmeric by PHWE were estimated at 197 °C using 62 g/L buffer concentration at pH 1.6. The relationships between these variables were subjected to statistical analysis using response surface methodology.  相似文献   

3.
In the move towards the elimination of organic solvents in the extraction process in botanicals, a new method combining surfactant and pressurized hot water extraction (PWHE) with an applied temperature below the boiling point and lower pressure from 10 to 20 bar was developed for the analysis of marker compounds that are reasonably hydrophobic such as tetradeca‐4E,12E‐diene‐8,10‐diyne‐1,6,7‐triol and tetradeca‐4E,12E‐diene‐8,10‐diyne‐1,6,7‐triol‐O‐β‐D‐glucoside in Radix Codonopsis pilosula (DangShen). Because reference substances for the proposed botanicals were not available, a method was developed to isolate the marker compounds in Radix Codonopsis pilosula. Other than surfactant‐assisted PHWE, the marker compounds present in Radix Codonopsis pilosula were extracted using pressurized liquid extraction (PLE) with methanol and PHWE with a mixture of water/ethanol (80:20). The extracts were analyzed using liquid chromatography and liquid chromatography/electrospray ionization mass spectrometry. With surfactant‐assisted PHWE, the effects of different added surfactants such as sodium dodecyl sulfate and Triton X‐100 was studied. Surfactant assisted PHWE with Triton X‐100 proved to be at least equivalent or better compared to Soxhlet extraction in terms of quantitative analysis of marker compounds in Radix Codonopsis pilosula. The method precision was less than 8% (RSD, n = 6). The presence of surfactants in PHWE was found to enhance the solubility of target compounds naturally occurring in medicinal plants.  相似文献   

4.
Our earlier work showed that the stability of the bioactive compounds gastrodin (GA) and vanillyl alcohol (VA) in Gastrodia elata Blume behaved differently with varying compositions of water-ethanol using pressurized liquid extraction (PLE) at room temperature. To have a better understanding of the extraction process of these thermally labile compounds under elevated temperature conditions, pressurized hot water extraction (PHWE) and microwave-assisted extraction (MAE) methods were proposed. PHWE and MAE showed that GA and VA could be extracted using pure water under optimized conditions of temperature and extraction time. The extraction efficiency of GA and VA by the proposed methods was found to be higher or comparable to heating under reflux using water. The marker compounds present in the plant extracts were determined by RP-HPLC. The optimized conditions were found to be different for the two proposed methods on extraction of GA and VA. The method precision (RSD, n=6) was found to vary from 0.92% to 3.36% for the two proposed methods on different days. Hence, PHWE and MAE methods were shown to be feasible alternatives for the extraction of thermally labile marker compounds present in medicinal plants.  相似文献   

5.
Pressurized hot water extraction (PHWE) has become a popular green extraction method for different classes of compounds present in numerous kinds of matrices such as environmental, food and botanical samples. PHWE is also used in sample preparation to extract organic contaminants from foodstuff for food safety analysis and soils/sediments for environmental monitoring purposes. The main parameters which influence its extraction efficiency are namely the temperature, extraction time, flow rates and addition of modifiers/additives. Among these different parameters studied, temperature is described as the most important one. It is reported that the extraction of certain compounds is rather dependent on pressurized water with different applied temperature. Thus, the stability and reduced solubilities of certain compounds at elevated temperatures are highlighted in this review. With some modifications, a scaled-up PHWE could extract a higher amount of desirable compounds from solid and powdered samples such as plant and food materials. The PHWE extracts from plants are rich in chemical compounds or metabolites which can be a potential lead for drug discovery or development of disease-resistant food crops.  相似文献   

6.
In this work, a simple, rapid, solvent-free, and low-cost method was developed for the determination of ligustilides in traditional Chinese medicines (TCMs), which was based on pressurized hot water extraction (PHWE) followed by headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). The two bioactive compounds Z-ligustilide and E-ligustilide in two common TCMs, viz. Ligusticum chuanxiong and Angelica sinensis, were extracted by water at 150 degrees C and 40 bar, followed by concentration with HS-SPME and detection by GC-MS. PHWE and HS-SPME parameters were investigated and method validation (precision and recovery) was studied. It has been shown that the proposed method provides a powerful approach for quantitative analysis of ligustilides in TCMs. The method was applied to determination of ligustildes in the TCMs from different growing areas. The results indicate that PHWE-HS-SPME-GC-MS is a potential tool for TCM quality assessment.  相似文献   

7.
Pressurized hot water extraction (PHWE) using a laboratory made system was applied for the extraction of thermally labile and reasonably polar components such as berberine in coptidis rhizoma, glycyrrhizin in radix glycyrrhizae/liquorice and baicalein in scutellariae radix. PHWE was carried out dynamically at a flow of 1 ml/min, temperature between 95 and 140 °C, an applied pressure of 10-20 bar and extraction time of 40 min. Extraction by PHWE was found to give efficiencies comparable to Soxhlet extraction for baicalein in scutellariae radix and sonication for berberine in coptidis rhizoma, and glycyrrhizin in radix glycyrrhizae. Effects of ethanol added into the water used in PHWE were explored. Pressurized liquid extraction (PLE) with methanol as solvent was used for extraction of baicalein in scutellariae radix. The marker compounds present in the various medicinal plant extracts were determined by gradient elution HPLC.  相似文献   

8.
Extraction and analysis of labile compounds in complex sample matrices, such as plants, is often a big analytical challenge. In this work, the use of a “green and clean” pressurised hot water extraction (PHWE) approach performed in continuous flow mode is explored. Experimental data for extraction and degradation kinetics of selected compounds were utilised to develop a continuous flow extraction (CFE) method targeting thermolabile polyphenols in red onions, with detection by high-performance liquid chromatography (HPLC)–diode array detection (DAD)–mass spectrometry (MS). Water containing ethanol and formic acid was used as extraction solvent. Method performance was focused on extraction yield with minimal analyte degradation. By adjusting the flow rate of the extraction solvent, degradation effects were minimised, and complete extraction could be achieved within 60 min. The CFE extraction yields of the polyphenols investigated were 80–90 % of the theoretically calculated quantitative yields and were significantly higher than the yields obtained by conventional methanol extraction and static batch extraction (70–79 and 58–67 % of the theoretical yields, respectively). The precision of the developed method was lower than 8 % expressed as relative standard deviation.
Figure
Scheme of pressurised hot water extraction of polyphenols in continuous flow mode  相似文献   

9.
To reduce the use of organic solvent, pressurized hot water extraction (PHWE) has been shown to be a feasible option for the extraction of bioactive and marker compounds in botanicals and medicinal plants. The parameters that may affect the extraction efficiencies in PHWE include temperature, extraction time and addition of small percentage of organic solvent or surfactants. Currently, applications of PHWE for the extraction of thermally labile compounds in botanicals are still rather limited. PHWE with and without the additional of a small percentage of organic solvent such as ethanol is highly suited for the chemical standardization and quality control of medicinal plants. At the same time, it can be applied at the pilot scale as a manufacturing process for medicinal plants. Surfactant assisted PHWE was found to enhance the extraction of thermally labile and more hydrophobic species in medicinal plants at a lower temperature. The addition of small amount of surfactants in PHWE is highly suited for the determination of bioactive or marker compounds in medicinal plants. With proper optimization, PHWE was observed to have good extraction efficiency and precision when compared to other reference methods of extraction.  相似文献   

10.
Self-constructed pressurized hot water extraction (PHWE) equipment was used in dynamic mode to extract spiked phenolic compounds (phenol, 3-methylphenol, 4-chloro-3-methylphenol and 3,4-dichlorophenol) from sea sand and soil. Phenols were analyzed by both gas chromatography-mass spectrometry (GC-MS) and capillary zone electrophoresis (CZE) to compare the techniques and to find out if CZE is a suitable tool for analysis of phenols extracted from environmental matrix. Good recoveries of phenols spiked in sea sand were achieved at all PHWE temperatures (50, 100, 200, 300 C). GC-MS studies showed that phenols were selectively extracted from soil at 50 C but various other compounds (e.g. polyaromatic hydrocarbons) were extracted along with the phenols at 300 degrees C. In the case of CZE, phenols extracted from the soil, at 300 C were separated with good resolution at pH 9.7, and co-extracted compounds did not interfere with the analysis. The analytical values obtained by GC-MS and CZE were generally of similar magnitude.  相似文献   

11.
A new method has been developed for the determination of linear alkylbenzene sulfonates (LAS) from various marine organisms, and compared with Soxhlet extraction. The technique applied includes the use of pressurized liquid extraction (PLE) for the extraction stage, preconcentration of the samples, purification by solid-phase extraction (SPE) and analysis by liquid chromatography with fluorescence detection. The spiked concentrations were added to the samples (wet mass of the organisms: Solea senegalensis and Ruditapes semidecussatus), which were homogenized and agitated continuously for 25 h. The samples were extracted by pressurized hot solvent extraction using two different extraction temperatures (100 and 150 degrees C) and by traditional Soxhlet extraction. The best recoveries were obtained employing pressurized hot solvent extraction at 100 degrees C and varied in the range from 66.1 to 101.3% with a standard deviation of between 2 and 13. Detection limit was between 5 and 15 microg kg(-1) wet mass using HPLC-fluorescence detection. The analytical method developed in this paper has been applied for LAS determination in samples from a Flow-through exposure system with the objective of measuring the bioconcentration of this surfactant.  相似文献   

12.
Pressurized hot water extraction (PHWE) conditions (time, temperature, pressure) were optimized for the extraction of naringenin and other major flavonoids (dihydrokaempferol, naringin) from knotwood of aspen. Extracts were analysed by GC-FID, GC-MS, HPLC-UV and HPLC-MS. The results were compared with those obtained by Soxhlet, ultrasonic extraction and reflux in methanol. Flavonoids were most efficiently extracted with PHWE at 150 °C and 220 bar with 35 min extraction time. Soxhlet with methanol gave slightly higher recoveries, but an extraction time of 48 h was required. Naringenin concentration was highest in knotwood (1.15% dry weight) and much lower in the sapwood. PHWE proved to be cheap, fast and effective for the isolation of biofunctional flavonoids from aspen knotwood, producing higher recoveries than 24 h Soxhlet extraction, sonication or 24 h reflux.  相似文献   

13.
Symphytum officinale L. (comfrey) is a medicinal plant commonly used in decoctions and aliments. Besides therapeutic bioactive compounds present in the herb, it is found to contain hepatotoxic pyrrolizidine alkaloids (PAs), such as lycopsamine and others. In the present study, PAs such as lycopsamine, echimidine and lasiocarpine were determined using electrospray liquid chromatography-mass spectrometry (LC-MS) with the method precision (relative standard deviation, RSD) <10%. Detection of lycopsamine, symviridine and their N-oxides could be confirmed with a newly developed method based on HPLC ion-trap and orbitrap MS with electrospray ionization interface. With LC-MS, quantitative analysis of lycopsamine in the botanical extract was carried out. The effect of extraction solvent was optimized by sonication and methanol: H2O (50:50) was selected. Then a rapid method based on pressurized hot water extraction (PHWE) was employed for the extraction of lycopsamine from comfrey followed by the comparison with heating under reflux with the RSD ranging from 2.49% to 19.32%. Our results showed a higher extraction efficiency for heating under reflux compared with PHWE. It was proposed that the lower extraction efficiency for PHWE was attributable to dissolved nitrogen from air which caused the reduction in the solubility of lycopsamine in the compressed hot solvent. In this study, quantitative analysis of PAs in comfrey was demonstrated. In addition, it was found that the use of subcritical water for extractions depended on the physical properties of the dissolved solutes and their tendency to degrade under the chosen extraction conditions.  相似文献   

14.
Chrysanthemum flower is a common traditional Chinese medicine (TCM). In this work, pressurized hot water extraction (PHWE) followed by headspace solid-phase microextraction (HS-SPME) and GC-MS was developed for the determination of three main active volatile compounds of eucalyptol, camphor, and borneol in Chrysanthemum flowers from four different growing areas in China by internal standard method. The parameters of PHWE and HS-SPME were optimized. The method was also validated. The results showed that PHWE-SPME-GC-MS is a simple, rapid, efficient, and solvent-free technique for the quantitative determination of eucalyptol, camphor, and borneol in TCMs and is potentially useful for the TCM quality assessment.  相似文献   

15.
The stability of nine phenolic compounds in the extraction with superheated methanol at different temperatures (40, 50, 100 and 150 degrees C) has been tested. The evolution of the same compounds in boiling methanol (65 degrees C) in contact with air was also determined. All the assayed phenolic compounds were stable under the extraction conditions with the exception of catechin and epicatechin (recoveries: 87.4% for catechin and 86.0% for epicatechin at 150 degrees C and 94.1% for epicatechin at 100 degrees C). Phenolic compounds kept at the boiling point of methanol (65 degrees C) showed lower recoveries: gentisic acid (85.5%), syringic aldehyde (92.8%), catechin (63.7%) and epicatechin (63.4%). Extraction with superheated solvents was also applied to the extraction of phenolic compounds from solid wastes of the winemaking process.  相似文献   

16.
Hot water is attracting attention as an extraction solvent in the recovery of compounds from plant material as the search for milder and “greener” solvents intensifies. The use of hot water as an extraction solvent for milk thistle at temperatures above 100°C was explored. The maximum extraction yield of each of the silymarin compounds and taxifolin did not increase with temperature, most likely because significant compound degradation occurred. However, the time required for the yields of the compounds to reach their maxima was reduced from 200 to 55 min when the extraction temperature was increased from 100 to 140°C. Severe degradation of unprotected (plant matrix not present) silymarin compounds was observed and first-order degradation kinetics were obtained at 140°C.  相似文献   

17.
Extraction vessels of different length, internal diameter and volume were tested to evaluate the effect of vessel geometry on the recovery of polycyclic aromatic hydrocarbons (PAHs) from certified sediment by pressurised hot water extraction (PHWE). Pressurised hot water extractions were performed at 300 °C with both liquid water (pressure 250 kg cm–2) and steam (pressure 50 kg cm–2). In addition, the effects on the recoveries of sediment packing and water flow direction were examined in two vessels. The geometry of the vessel, the packing of the sediment and the flow direction of the water had only minor effect on the recoveries.  相似文献   

18.
Pressurised hot water extraction (PHWE) was coupled on-line with liquid chromatography-gas chromatography (LC-GC) to determine brominated flame retardants in sediment samples. After extraction with pressurised hot water the analytes were adsorbed in a solid-phase trap. The trap was dried with nitrogen and the analytes were eluted to the LC column, where the extract was cleaned, concentrated and fractionated before transfer to the GC system. The fraction containing the brominated flame retardants was transferred to the GC system via an on-column interface. The PHWE-LC-GC method was linear from 0.0125 to 2.5 microg with limits of detection in the range 0.70-1.41 ng/g and limits of quantification 6.16-12.33 ng/g.  相似文献   

19.
Pressurized hot water extraction (PHWE) was employed to prepare extracts from dried grape skin of two wine grape varieties (St. Laurent and Alibernet) at various temperatures (from 40 up to 120 °C) and amounts of sample (0.5, 1.0 and 1.5 g). To assess the antioxidant activity of the extracts, electron paramagnetic resonance (EPR) spectroscopy was applied involving DPPH and ABTS+ assays. Other extract characteristics including HPLC profile of anthocyanins and total phenolic compound content were obtained as well. PHWE has also been compared with earlier results of extractions of the same grape skin samples with compressed methanol and compressed ethanol under the conditions of pressurized fluid extraction (PFE). From this comparison, PHWE emerges as the more benign and efficient extraction method to recover valuable phenolic antioxidants from grape skins for the prospective use in functional food supplements.  相似文献   

20.
Brisbin JA  Caruso JA 《The Analyst》2002,127(7):921-929
A variety of extraction procedures were evaluated for the extraction of arsenic and other analytes from lobster tissue samples using inductively coupled plasma mass spectrometry (ICP-MS) detection. Soxhlet, room temperature mixing, sonication, microwave assisted, supercritical carbon dioxide and subcritical water extractions were evaluated for a variety of solvent systems and optimum conditions determined using a partially defatted Lobster Hepatopancreas marine certified reference material, TORT-2 (National Research Council of Canada). The solubility trends and solvents into which the analytes extracted gave an indication as to the polar/non-polar nature of the compounds present. Analytes that prefer water are probably more polar or inorganic, while those preferring methanol solutions are less polar or organic in nature. Arsenic, cadmium, cobalt, molybdenum and selenium were probably all present in TORT-2 in both polar inorganic and non-polar organic forms. While TORT-2 may have contained similar amounts of selenium in both forms, the results suggested that more of the arsenic was present as less polar or more organic compounds, and cobalt existed mainly as more polar or inorganic species. Most of the extraction techniques suggested that, although there may be some less polar organic forms present, more of the cadmium was probably present as polar inorganic compounds. Additionally, most techniques indicated that molybdenum was possibly all less polar or more organic in nature. In general, microwave assisted extraction (MAE) yielded comparable or improved recoveries for all of the analytes monitored and usually required less solvent. Additionally, MAE proved to be the mildest, fastest, least complicated and most reproducible extraction technique evaluated. MAE at 75 degrees C for 2 min exposure time yielded quantitative recovery of arsenic from TORT-2. These conditions were evaluated for lobster tissue samples purchased from a local restaurant. Separate evaluation of the lobster meat and organs resulted in quantitative recoveries of arsenic from both tissue samples. The results indicated that the extraction efficiencies might have some dependence upon the extraction technique, extraction conditions, analyte, solvent, and sample matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号