首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental results for the mass transfer between spherical naphthalene particles and air in packed tubes of very low tube to particle diameter ratio (D/d=1.41, 1.98, and 3.77) are presented. During the experiments the Reynolds number (2.4Re 0<1500), the=" bed=" length,=" and=" the=" test=" temperature=" have=" been=" varied.=" data=" reduction=" has=" been=" carried=" out=" with=" and=" without=" accounting=" for=" axial=" dispersion=" in=" the=" model.=" the=" measured=" sherwood=" numbers=" are=" compared=" with=" the=" predictions=" according=" to=" the=" correlation=" of=" gnielinski=" and=" of=" wakao/funazkri,=" originally=" developed=" for=" large=" packed=" beds.=" the=" porosity=" of=" packings=" at=">D/d-ratios is discussed.Es werden Versuchsergebnisse über die Stoffübertragung zwischen kugelförmigen Naphthalinpartikeln und Luft in Festbetten mit sehr kleinem Verhältnis zwischen dem Rohr- und dem Partikeldurchmesser (D/d=1,41, 1,98 und 3,77) mitgeteilt. Während der Experimente wurden die Reynoldszahl (2,4Re 0<1500), die=" bettlänge=" und=" die=" temperatur=" variiert.=" die=" versuchsauswertung=" erfolgte=" sowohl=" mit=" als=" auch=" ohne=" berücksichtigung=" der=" axialen=" dispersion.=" die=" experimentell=" ermittelten=" sherwoodzahlen=" werden=" mit=" den=" voraussagen=" der=" korrelationen=" von=" gnielinski=" und=" von=" wakao/funazkri=" verglichen;=" beide=" korrelationen=" wurden=" für=" betten=" mit=" einem=">D/d-Verhältnis entwickelt. Außerdem wird die Porosität von Betten im Bereich kleinerD/d-Quotienten behandelt.Dedicated to Prof. Dr.-Ing. K. Stephan on the occasion of his 60th birthday  相似文献   

2.
An analytical study is made of the critical axial heat flux in heated closed end vertical tubes in the case of small length to diameter ratios. An expression for the critical heat flux is obtained and its dependency on the dimensionless diameter is shown. Results are compared with the previous analysis for large length to diameter ratios and the available experimental data on vertical closed end tubes, vertical thermosyphons and wickless heat pipes. A high degree of consistancy between the present analysis and these experiments is obtained.  相似文献   

3.
This paper presents experimental results of the heat and mass transfer characteristics of a water–LiBr horizontal tube absorber made of small diameter tubes. The experimental set up includes a tube absorber, a generator, solution distribution system and cooling water system. Three different tube diameters of 15.88, 12.70 and 9.52 mm have been installed inside the absorber to investigate the effect of the tube diameter on the absorber performance. The experimental results show that the heat and mass transfer performance of the absorber increases as the tube diameter decreases. A comparison of the heat and mass transfer coefficients of the present study agree reasonable well with that of the previous studies.  相似文献   

4.
5.
Fully developed mixed convection of a nanofluid (water/Al2O3) has been studied numerically. Two-phase mixture model has been used to investigate the effects of nanoparticles mean diameter on the flow parameters. The calculated results demonstrate that the convection heat transfer coefficient significantly increases with decreasing the nanoparticles means diameter. However it does not significantly change the hydrodynamics parameters. Nanoparticles distribution at the tube cross section shows that the non-uniformity of the particles distribution augments when using larger nanoparticles and/or considering relatively high value of the Grashof numbers.  相似文献   

6.
Test results for boiling heat transfer coefficients for R114 in vertical stainless tubes are reported both for upflow and downflow direction. Results are compared with different formulas given in the literature. A Recommendation of the numerical value ofC sf in Rohsenow's formula for fully developed nucleation boiling for R114/stainless steel combination is given.  相似文献   

7.
8.
Enhancement of heat transfer performance, beyond that normally achieved in curved tube flows, is demonstrated for pulsatile flows and for developing flows. In the former, increases of greater than 20% are obtained and in the latter, a maximum increase of 60% is obtained.
Wärmeübergang in gewendelten Rohren
Zusammenfassung Es wird gezeigt, daß der Wärmeaustausch in gebogenen Rohren gegenüber herkömmlichen Strömungen vergrößert werden kann. Für pulsierende Strömungen werden Steigungen von mehr als 20%, für Einlaufströmungen von maximal 60% beobachtet.

Nomenclature a Pipe radius - De Dean number= - K Pressure amplitude ratio - Nu Nusselt number - Pr Prandtl number - R Coil radius - Re Reynolds number - T Dimensionless temperature - Z Dimensionless axial length - Dimensionless frequency= - m Mean boundary layer thickness - Excitation frequency - Kinematic viscosity - Dimensionless wave-length Dedicated to Professor E. R. G. Eckert on the occasion of his 80th birthday  相似文献   

9.
The flow patterns and heat transfer coefficients of R-22 and R-134a during evaporation in small diameter tubes were investigated experimentally. The evaporation flow patterns of R-22 and R-134a were observed in Pyrex sight glass tubes with 2 and 8 mm diameter tube, and heat transfer coefficients were measured in smooth and horizontal copper tubes with 1.77, 3.36 and 5.35 mm diameter tube, respectively. In the flow patterns during evaporation process, the annular flows in 2 mm glass tube occurred at a relatively lower vapor quality compared to 8 mm glass tube. The flow patterns in 2 mm glass tube did not agree with the Mandhane’s flow pattern maps. The evaporation heat transfer coefficients in the small diameter tubes (d i  < 6 mm) were observed to be strongly affected by tube diameters, and to differ from those in the large diameter tubes. The heat transfer coefficients of 1.77 mm tube were higher than those of 3.36 mm and 5.35 mm tube. Most of the existing correlations failed to predict the evaporation heat transfer coefficient in small diameter tubes. Therefore, based on the experimental data, the new correlation is proposed to predict the evaporation heat transfer coefficients of R-22 and R-134a in small diameter tubes.  相似文献   

10.
In previous studies, calculation of overall heat transfer coefficients in a triple tube heat exchanger (TTHE) involved assumptions or approaches those are not valid in all cases. In this study a more generic way of calculating overall heat transfer coefficients in a TTHE has been developed. Consequently, temperature profiles of all streams in a TTHE in the axial direction were determined. An effective overall heat transfer coefficient that is related to the total resistance to heat transfer in the TTHE, was also determined to facilitate comparison of a TTHE to an equivalent double tube heat exchanger.  相似文献   

11.
This study paid attention to the effect of fluid temperatures on the forced convective flow drag and heat transfer characteristics of multi-wall carbon nanotube (MWNTs)-water suspensions without any surfactants. The experiments were carried out under the two fixed average fluid temperatures of 29 and 58°C. A horizontal small stainless steel tube with an inner diameter of 1.02 mm was used as the test section. The experiment results show that the flow drag characteristics of suspensions are almost the same as those of water. While the heat transfer of MWNTs suspensions with high mass concentration or high fluid temperature is significantly enhanced. The fluid temperature does not affect flow drag characteristics but has great effect on the heat transfer characteristics. Nanometer characteristics are presented by suspensions with high MWNT mass concentration or high temperature on convective heat transfer.  相似文献   

12.
In the present study, the influences of twin-counter/co-twisted tapes (counter/co-swirl tape) on heat transfer rate (Nu), friction factor (f) and thermal enhancement index (η) are experimentally determined. The twin counter twisted tapes (CTs) are used as counter-swirl flow generators while twin co-twisted tapes (CoTs) are used as co-swirl flow generators in a test section. The tests are conducted using the CTs and CoTs with four different twist ratios (y/w = 2.5, 3.0, 3.5 and 4.0) for Reynolds numbers range between 3700 and 21,000 under uniform heat flux conditions. The experiments using the single twisted tape (ST) are also performed under similar operation test conditions, for comparison. The experimental results demonstrate that Nusselt number (Nu), friction factor (f) and thermal enhancement index (η) increase with decreasing twist ratio (y/w). The results also show that the CTs are more efficient than the CoTs for heat transfer enhancement. In the range of the present work, heat transfer rates in the tube fitted with the CTs are around 12.5–44.5% and 17.8–50% higher than those with the CoTs and ST, respectively. The maximum thermal enhancement indices (η) obtained at the constant pumping power by the CTs with y/w = 2.5, 3.0, 3.5 and 4.0, are 1.39, 1.24, 1.12 and 1.03, respectively, while those obtained by using the CoTs with the same range of y/w are 1.1, 1.03, 0.97 and 0.92, respectively. In addition, the empirical correlations of the heat transfer (Nu), friction factor (f) and thermal enhancement index (η) are also reported.  相似文献   

13.
An experimental investigation has been carried out to study the heat transfer characteristics during evaporation of R-134a inside a single helical microfin tube. The microfin tube has been provided with different tube inclination angles of the direction of fluid flow from horizontal, α. The experiments were performed for seven different tube inclinations, α, in a range of −90° to +90° and four mass velocities of 53, 80, 107 and 136 kg/m2 s for each tube inclination angle during evaporation of R-134a. The results demonstrate that the tube inclination angle, α, affects the boiling heat-transfer coefficient in a significant manner. For all refrigerant mass velocities, the best performing tube is that having inclination angle of α = +90°. The effect of tube inclination angle, α, on heat-transfer coefficient, h, is more prominent at low vapor quality and mass velocity. An empirical correlation has also been developed to predict the heat-transfer coefficient during flow boiling inside a microfin tube with different tube inclinations.  相似文献   

14.
The condensation heat transfer of pure refrigerants, R-22, R-134a and a binary refrigerant R-410A flowing in small diameter tubes was investigated experimentally. The condenser is a countflow heat exchanger which refrigerant flows in the inner tube and cooling water flows in the annulus. The heat exchanger is smooth, horizontal copper tube of 1.77, 3.36 and 5.35 mm inner diameter, respectively. The length of heat exchanger is 1220, 2660 and 3620 mm, respectively. The experiments were conducted at mass flux of 200–400 kg/m2 s and saturation temperature of 40°C. The main results were summarized as follows: in case of single-phase flow, the single-phase Nusselt Number measured by experimental data was higher than that calculated by Gnielinski and Wu and Little correlation. The new single-phase correlation based on the experimental data was proposed in this study. In case of two-phase flow, the condensation heat transfer coefficient of R-410A for three tubes was slightly higher than that of R-22 and R-134a at the given mass flux. The condensation heat transfer coefficient of R-22 showed almost a similar value to that of R-134a. The condensation heat transfer coefficient for R-22, R-134a and R-410A increased with increasing mass flux and decreasing tube diameter. Most of the existing correlations which were proposed in the large diameter tube failed to predict condensation heat transfer. Therefore, the new condensation heat transfer correlation based on the experimental data was proposed in the present study.  相似文献   

15.
16.
The effects of thermal entrance length, polymer degradation and solvent chemistry were found to be critically important in the determination of the drag and heat transfer behavior of viscoelastic fluids in turbulent pipe flow. The minimum heat transfer asymptotic values in the thermally developing and in the fully developed regions were experimentally determined for relatively high concentration solutions of heat transfer resulting in the following correlations: $$\begin{gathered} j_H = 0.13\left( {\frac{x}{d}} \right)^{ - 0.24} \operatorname{Re} _a^{ - 0.45} thermally developing region \hfill \\ x/d< 450 \hfill \\ j_H = 0.03 \operatorname{Re} _a^{ - 0.45} thermally developed region \hfill \\ x/d< 450 \hfill \\ \end{gathered} $$ For dilute polymer solutions the heat transfer is a function ofx/d, the Reynolds number and the polymer concentration. The Reynolds analogy between momentum and heat transfer which has been widely used in the literature for Newtonian fluids is found not to apply in the case of drag-reducing viscoelastic fluids.  相似文献   

17.
Comparative numerical study of laminar heat transfer characteristics of annular tubes with sinusoidal wavy fins has been conducted both experimentally and numerically with Re = 299–1,475. The uniform heat flux is imposed on the tube outside wall surface. Two tube materials (copper and stainless steel) are considered. It is found that the fluid temperature profile is not linear but convex along the flow direction due to the axial heat conduction in tube wall, and the effects of axial heat conduction on the heat transfer decreases with an increase in Reynolds number or decrease in tube wall thermal conductivity. The axial distributions of local Nusselt number could reach periodically fully developed after 3–5 cycles. The convectional data reduction method based on the traditional method should be improved for tube with high thermal conductivity or low Reynolds numbers, Otherwise, the heat transfer performance of internally finned tube may be underestimated.  相似文献   

18.
Flow and heat transfer characteristics inside a wavy tube   总被引:2,自引:0,他引:2  
  相似文献   

19.
A numerical investigation of the mixed convection heat transfer from vertical helically coiled tubes in a cylindrical shell at various Reynolds and Rayleigh numbers, various coil‐to‐tube diameter ratios and non‐dimensional coil pitches was carried out. The particular difference in this study compared with other similar studies is the boundary conditions for the helical coil. Most studies focus on constant wall temperature or constant heat flux, whereas in this study it was a fluid‐to‐fluid heat exchanger. The purpose of this article is to assess the influence of the tube diameter, coil pitch and shell‐side mass flow rate on shell‐side heat transfer coefficient of the heat exchanger. Different characteristic lengths were used in the Nusselt number calculations to determine which length best fits the data and finally it has been shown that the normalized length of the shell‐side of the heat exchanger reasonably demonstrates the desired relation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
In this experimental study, the critical tube diameter phenomenon of gaseous detonations is investigated in both stable and unstable mixtures with focus on the failure mechanism. It was previously postulated that in unstable mixtures, where the cellular detonation front is highly irregular, the failure is caused by the suppression of local re-initiation centers linked to the dynamics of instabilities. In stable mixtures, typically with high argon dilution, the detonation structure is very regular and the failure mode is attributed to the excessive curvature of the global front. In order to differentiate between these two failure mechanisms, flow perturbations are introduced by placing an obstacle resulting in a minimal blockage ratio of approximately 8 %. The obstacle is placed at the tube exit, before the detonation diffraction. Results show that the perturbations caused by the obstacle only have an effect on undiluted (i.e., unstable) mixtures, causing a decrease in the minimum initial pressure required for successful detonation transmission. This thus demonstrates that local hydrodynamic instabilities play an important role for the critical tube diameter phenomenon in undiluted, unstable mixtures. In contrast, the results for the stable, argon-diluted mixture exhibit little variation in critical initial pressure between the perturbed and unperturbed cases. This can be attributed to the minimal effect of the perturbations on global curvature for the emergent detonation wave. The geometry of the perturbation is also tested, while holding the blockage area constant, by varying the number and position of the obstacle(s). The results demonstrate that the transmission of a detonation is independent of the blockage geometry and is only a function of its imposed blockage area. Consequently, the change in required minimum pressure for transmission shows an identical behavior in unstable mixtures for different perturbation geometries while the transmission characteristics of the stable mixture remain unaffected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号