首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the pinning stabilization problem of time-delay neural networks. A new pinning delayed-impulsive controller is proposed to stabilize the neural networks with delays. First, we consider the general nonlinear time-delay systems with delayed impulses, and establish several global exponential stability criteria by employing the method of Lyapunov functionals. Our results are then applied to obtain sufficient conditions under which the proposed pinning controller can exponentially stabilize the time-delay neural networks. It is shown that the global exponential stabilization of delayed neural networks can be effectively realized by controlling a small portion of neurons in the networks via delayed impulses, and, for fixed impulsive control gain, increasing the impulse delay or decreasing the number of neurons to be pinned at the impulsive moments will lead to high frequency of impulses added the corresponding neurons. Numerical examples are provided to illustrate the theoretical results, which demonstrate that our results are less conservative than the results reported in the existing literatures when the proposed pinning controller reduces to the delayed impulsive controller.  相似文献   

2.
In this paper, by utilizing the Lyapunov functionals, the analysis method and the impulsive control, we analyze the exponential stability of Hopfield neural networks with time‐varying delays. A new criterion on the exponential stabilization by impulses and the exponential stabilization by periodic impulses is gained. We can see that impulses do contribution to the system's exponential stability. Two examples are given to illustrate the effectiveness of our result. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
We treat the sliding mode control problem by formulating it as a two phase problem consisting of reaching and sliding phases. We show that such a problem can be formulated as bicriteria nonlinear programming problem by associating each of these phases with an appropriate objective function and constraints. We then scalarize this problem by taking weighted sum of these objective functions. We show that by solving a sequence of such formulated nonlinear programming problems it is possible to obtain sliding mode controller feedback coefficients which yield a competitive performance throughout the control. We solve the nonlinear programming problems so constructed by using the modified subgradient method which does not require any convexity and differentiability assumptions. We illustrate validity of our approach by generating a sliding mode control input function for stabilization of an inverted pendulum.  相似文献   

4.
This article deals with the approximate controllability problem for fractional evolution equations involving noninstantaneous impulses and state-dependent delay. In order to derive sufficient conditions for the approximate controllability of our problem, we first consider the linear-regulator problem and find the optimal control in the feedback form. By using this optimal control, we develop the approximate controllability of the linear fractional control system. Further, we obtain sufficient conditions for the approximate controllability of the nonlinear problem. In the end, we provide a concrete example to support the applicability of the derived results.  相似文献   

5.
This paper deals with the problem of finite-time stability and stabilization of nonlinear Markovian switching stochastic systems which exist impulses at the switching instants. Using multiple Lyapunov function theory, a sufficient condition is established for finite-time stability of the underlying systems. Furthermore, based on the state partition of continuous parts of systems, a feedback controller is designed such that the corresponding impulsive stochastic closed-loop systems are finite-time stochastically stable. A numerical example is presented to illustrate the effectiveness of the proposed method.  相似文献   

6.
In this paper, we investigate periodic BVP for integer/fractional order nonlinear differential equations with non-instantaneous impulses. Several new existence results are obtained under different conditions via fixed point methods. Finally, two examples are given to illustrate our main results.  相似文献   

7.
This paper investigates input-to-state stability (ISS) and integral-input-to-state stability (iISS) of nonlinear impulsive systems with hybrid delayed impulses. Based on Lyapunov method, some sufficient conditions ensuring ISS and iISS of impulsive systems are obtained, where the time derivative of Lyapunov function is indefinite, and the hybrid effects of delayed impulses are also fully considered. It is shown that the impulsive system is ISS provided that the combined action of time delay existing in impulses, continuous dynamic, and the cumulative strength of hybrid impulses satisfies some conditions, even if the hybrid delayed impulses play a destabilizing effect on ISS. Examples and their simulations are presented to illustrate the applicability of the proposed results.  相似文献   

8.
Song Zheng 《Complexity》2016,21(5):131-142
Synchronization and control of nonlinear dynamical systems with complex variables has attracted much more attention in various fields of science and engineering. In this article, we investigate the problem of impulsive synchronization for the complex‐variable delayed chaotic systems with parameters perturbation and unknown parameters in which the time delay is also included in the impulsive moment. Based on the theories of adaptive control and impulsive control, synchronization schemes are designed to make a class of complex‐variable chaotic delayed systems asymptotically synchronized, and unknown parameters are identified simultaneously in the process of synchronization. Sufficient conditions are derived to synchronize the complex‐variable chaotic systems include delayed impulses. To illustrate the effectiveness of the proposed schemes, several numerical examples are given. © 2014 Wiley Periodicals, Inc. Complexity 21: 131–142, 2016  相似文献   

9.
This paper addresses input-to-state stability (ISS) and integral input-to-state stability (iISS) problem of impulsive systems with hybrid inputs and delayed impulses. By adopting Lyapunov function method, sufficient conditions for ISS/iISS are established, and the impact of time delay in hybrid impulses, that is, the stabilizing impulses and destabilizing impulses, are further studied. Moreover, several examples are given and numerical simulations are performed to illustrate their usefulness.  相似文献   

10.
In this work, the asymptotic behavior of all solutions of second-order nonlinear ordinary differential equations with impulses is investigated. By impulsive differential inequality and Riccati transformation, sufficient conditions of asymptotic behavior of all solutions of second-order nonlinear ordinary differential equations with impulses are obtained. An example is also inserted to illustrate the impulsive effect.  相似文献   

11.
In this paper, we study the existence of infinitely many solutions for second-order Hamiltonian systems with impulses. By using an infinitely many critical points theorem and Fountain theorem, we obtain some new criteria for guaranteeing that the impulsive Hamiltonian systems have infinitely many solutions. No symmetric condition on the nonlinear term is assumed. Some examples are also given in this paper to illustrate our main results.  相似文献   

12.
In this paper, by utilizing Lyapunov functional method, the quality of negative definite matrix and the linear matrix inequality approach, the global exponential stability of the equilibrium point for a class of generalized delayed neural networks with impulses is investigated. A new criterion on global exponential stability is obtained. The result is related to the size of delays and impulses. An example is given to illustrate the effectiveness of our result. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
In this work, we consider the control problem of multiple Lotka–Volterra system. Our means to control the population dynamics is via impulses not only in a single species, but also in multiple species, that is, some members of these populations are added to or removed from the environment impulsively at the same time. We establish the strategies for preventing all the species from going extinct by stabilizing some special positive points, which may not be the equilibrium points of the system. We give several Lotka–Volterra systems to illustrate our results by drawing their time-series graphs.  相似文献   

14.
By using a fixed point theorem of strict-set-contraction, sufficient conditions for the existence of positive periodic solutions of nonlinear differential systems with impulses are obtained. As applications of our results, the existence of positive periodic solutions are established for delay Lotka–Volterra systems with impulses or without impulses.  相似文献   

15.
By using the method of coincidence degree, some criteria are established for the existence and uniqueness of anti-periodic solution for a kind of forced Rayleigh equation with state dependent delay and impulses. An example is given to illustrate our results.  相似文献   

16.
Stability analysis of nonlinear fractional differential systems has been an open problem since the 1990s of the last century. Apparently, Lyapunov’s second method seems to be invalid for nonlinear fractional differential systems (equations). In this paper, we are concerned with this open problem and have solved it partly. Based on Lyapunov’s second method, a novel stability criterion for a class of nonlinear fractional differential system is derived. Our result is simple, global and theoretically rigorous. The conditions to guarantee the stability of the nonlinear fractional differential system are convenient for testing. Compared with the stability criteria in the literature, our criterion is straightforward and suitable for application. Several examples are provided to illustrate the applications of our result.  相似文献   

17.
18.
A method is proposed for the numerical construction of an optimal control for a nonlinear system moving under the action of instantaneous impulses. The magnitudes of impulses and the moments of their action are variable. The algorithm is based on the sequential linearization of the system of equations of motion and the projection of the antigradient of the objective function on the set of constraints.Translated from Dinamicheskie Sistemy, No. 4, pp. 3–10, 1985.  相似文献   

19.
Using Balakrishnan's epsilon problem formulation (Ref. 1) and the Rayleigh-Ritz method with an orthogonal polynomial function basis, optimal control problems are transformed from the standard two-point boundary-value problem to a nonlinear programming problem. The resulting matrix-vector equations describing the optimal solution have standard parallel solution methods for implementation on parallel processor arrays. The method is modified to handle inequality constraints, and some results are presented under which specialized nonlinear functions, such as sines and cosines, can be handled directly. Some computational results performed on an Intel Sugarcube are presented to illustrate that considerable computational savings can be realized by using the proposed solution method.  相似文献   

20.
张旭 《计算数学》2010,32(2):195-205
本文对一类奇异两点边值问题采用了对称的Galerkin方法.通过利用Green函数,对线性问题得到了拟最优的最大范数误差估计并将这一结果推广到了非线性问题.本文最后列举了一些数值试验结果,这些结果很好地验证了理论结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号