首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have performed classical molecular dynamics to study the properties of a water-miscible and a water-immiscible room-temperature ionic liquid when mixed with small quantities of water. The two ionic liquids consist of the same 1-ethyl-3-methylimidazolium ([EMIM]) cation combined with either the boron tetrafluoride ([BF(4)]) or bis(trifluoromethylsulfonyl)imide ([NTf(2)]) anion. It is found that, in both ionic liquids, water clusters of varying sizes are typically hydrogen bonded to two anions with the cation playing a minor role. We also highlight the difficulties of obtaining dynamic quantities such as self-diffusion coefficients from simulations of such viscous systems.  相似文献   

2.
ABSTRACT

The present work is devoted to the thermochemical study of solvation of ionic liquids (IL) in benzene. The solution enthalpies of 1-ethyl-3-methylimidazolium tricyanomethanide [EMIM][C(CN)3], 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4], 1-hexyl-3-methylimidazolium hexafluorophosphate [HMIM][PF6], 1-octyl-3-methylimidazolium tetrafluoroborate [OMIM][BF4], 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMIM][NTf2], 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BMIM][NTf2] and 1-butyl-3-methylimidazolium trifluoromethanesulfonate [BMIM][TfO] in benzene were measured. The solvation enthalpies of imidazolium-based IL were calculated. Molar refractions of imidazolium-based IL form literature data on density and refractive indexes of IL were also calculated. The linear correlation between solvation enthalpy and molar refraction of IL was observed. This correlation can be used to calculate the vaporization enthalpy of imidazolium-based IL from solution calorimetry data.  相似文献   

3.
Using molecular dynamics simulations, the melting points and liquid phase dynamic properties were studied for four alkyl-imidazolium-based ionic liquids, 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), 1-n-butyl-2,3-dimethylimidazolium hexafluorophosphate ([BMMIM][PF6]), 1-ethyl-3-methylimidazolium hexafluorophosphate ([EMIM][PF6]), and 1-ethyl-2,3-dimethylimidazolium hexafluorophosphate ([EMMIM][PF6]), respectively. Experimentally it has been observed that the substitution of a methyl group for a hydrogen at the C2 position of the cation ring leads to an increase in both the melting point and liquid phase viscosity, contrary to arguments that had been made regarding associations between the ions. The melting points of the four ionic liquids were accurately predicted using simulations, as were the trends in viscosity. The simulation results show that the origin of the effect is mainly entropic, although enthalpy also plays an important role.  相似文献   

4.
This study focuses on the solubility behaviors of CO2, CH4, and N2 gases in binary mixtures of imidazolium-based room-temperature ionic liquids (RTILs) using 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][Tf2N]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim][BF4]) at 40 degrees C and low pressures (approximately 1 atm). The mixtures tested were 0, 25, 50, 75, 90, 95, and 100 mol % [C2mim][BF4] in [C2mim][Tf2N]. Results show that regular solution theory (RST) can be used to describe the gas solubility and selectivity behaviors in RTIL mixtures using an average mixture solubility parameter or an average measured mixture molar volume. Interestingly, the solubility selectivity, defined as the ratio of gas mole fractions in the RTIL mixture, of CO2 with N2 or CH4 in pure [C2mim][BF4] can be enhanced by adding 5 mol % [C2mim][Tf2N].  相似文献   

5.
《Fluid Phase Equilibria》2006,242(2):147-153
Isobaric vapor–liquid equilibrium (VLE) data for ethanol–water systems containing ionic liquids (ILs) 1-methyl-3-methylimidazolium dimethylphosphate ([MMIM][DMP]), 1-ethyl-3-methylimidazolium diethylphosphate ([EMIM][DEP]), 1-butyl-3-methylimidazolium bromide ([BMIM][Br]), 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) at atmospheric pressure (101.32 kPa) were measured with a circulation still. The results showed that the VLE of ethanol–water systems in the presence of different ILs was obviously different from that of the IL-free system. All ILs studied showed a salting-out effect, which gave rise to a change of the relative volatility of ethanol, and even to an elimination of the azeotropic point. It was found that the salting-out effect followed the order of [BMIM][Cl] > [BMIM][Br] > [BMIM][PF6] and [MMIM][DMP] > [EMIM][DEP], which was ascribed to the preferential solvation ability of the ions resulting from the dissociation of the IL.  相似文献   

6.
Mutual diffusion coefficients D(12) of the ionic liquids 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C(2)MIM][NTf(2)]) and [C(4)MIM][NTf(2)] in highly diluted solutions of water and methanol have been measured at different temperatures between 288 K and 313 K using the Taylor dispersion technique. Tracer diffusion coefficients of the two cations [C(2)MIM](+) and [C(4)MIM](+) as well as the anion [NTf(2)](-) in these solutions have been obtained by molecular dynamics (MD) simulations. For our simulations we used well established force fields for the solvents water and methanol and a recently developed force field for imidazolium-based ionic liquid [C(n)MIM][NTf(2)]. Mutual diffusion coefficients D(12) have been calculated from the tracer diffusion coefficients using the Nernst-Hartley equation strictly valid only at low ionic concentration. The agreement between the diffusion coefficients reported in the literature, the experimental data obtained in this work and the MD results is excellent.  相似文献   

7.
Vapor pressure data were measured for water, methanol and ethanol as well as their binary mixtures with an ionic liquid (IL) 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM][DMP]) at varying temperature and IL-content ranging from mass fraction of 0.10–0.70 by a quasi-static method. The vapor pressure data for the IL-containing binary systems were correlated using NRTL equation with average absolute relative deviation (ARD) within 0.0076, and the binary NRTL parameters was used for predicting the vapor pressure of the IL-containing ternary systems with reasonable accuracy. In addition, the infinite activity coefficients of solvents in [EMIM][DMP] and isobaric vapor–liquid equilibrium for IL-containing ternary systems at 101.325 kPa and mass fraction of IL being 0.5 were predicted with the regressed NRTL parameters. The results indicate that ionic liquid [EMIM][DMP] can depress the volatility of the solvents of water, methanol and ethanol but to a varying degree, leading to the variation of relative volatility of a solvent and even removal of azeotrope for water–ethanol mixture.  相似文献   

8.
The ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]) and 1-methyl-3-propylimidazolium tetrafluoroborate ([PMIM][BF4]) were studied by H,H-NOESY NMR using a cross-relaxation matrix analysis. Cross-peak intensities are seen to increase with increasing mixing time. Experimental and theoretical hydrogen-hydrogen distances are in agreement at short mixing times (50 ms). Mixing times longer than 50 ms result in an increasing contribution of spin diffusion that produces unrealistically short hydrogen-hydrogen distances. Gas-phase ab initio molecular structures are obtained using Hartree-Fock (HF) and density functional theory (B3LYP) methods at the 6311 + G(2d,p) basis set level. The hydrogen-hydrogen distances obtained from the theoretical structures are in reasonable agreement with those calculated from the cross-relaxation matrices.  相似文献   

9.
In this work, the feasibility of ionic liquids (ILs), 1,3-dimethylimidazolium dimethylphosphate ([MMIM][DMP]), 1-ethyl-3-methylimidazolium diethylphosphate ([EMIM][DEP]), and 1-butyl-3-methylimidazolium dibutylphosphate ([BMIM][DBP]), as solvents for the extraction of methanol from its mixtures with hexane and heptane was analyzed. The knowledge of (liquid + liquid) equilibria (LLE) of these mixtures is necessary for the design of the extraction separation process. Hence, the LLE data for the ternary systems, {methanol + hexane + ([MMIM][DMP], or [EMIM][DEP], or [BMIM][DBP])}, and {methanol + heptane + ([MMIM][DMP], or [EMIM][DEP], or [BMIM][DBP])}, were measured at T = 298.2 K and atmospheric pressure. The experimental results were correlated with the thermodynamic nonrandom two-liquid (NRTL) model. The solute distribution ratios of methanol and methanol/alkane selectivities, derived from the experimental LLE data, were calculated and analyzed to evaluate the capability of the studied ILs to accomplish the separation target. Meanwhile, these capabilities were also compared with that of other ILs obtained from the literature.  相似文献   

10.
Three different ionic liquids are investigated via atomistic molecular dynamics simulations using the force field of Lopes and PAdua (J. Phys. Chem. B 2006, 110, 19586). In particular, the 1-ethyl-3-methylimidazolium cation EMIM+ is studied in the presence of three different anions, namely, chloride Cl-, tetrafluoroborate BF(4)(-), and bis((trifluoromethyl)sulfonyly)imide TF2N-. In the focus of the present study are the static distributions of anions and cations around a cation as a function of anion size. It is found that the preferred positions of the anions change from being close to the imidazolium hydrogens to being above and below the imidazolium rings. Lifetimes of hydrogen bonds are calculated and found to be of the same order of magnitude as those of pure liquid water and of some small primary alcohols. Three kinds of short-range cation-cation orderings are studied, among which the offset stacking dominates in all of the investigated ionic liquids. The offset stacking becomes weaker from [EMIM][Cl] to [EMIM][BF4] to [EMIM][TF2N]. Further investigation of the dynamical behavior reveals that cations in [EMIM][TF2N] have a slower tumbling motion compared with those in [EMIM][Cl] and [EMIM][BF4] and that pure diffusive behavior can be observed after 1.5 ns for all three systems at temperatures 90 K above the corresponding melting temperatures.  相似文献   

11.
Densities and viscosities of binary ionic liquids mixtures, 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ([eOHmim][BF4]) + 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ([eOHmim][BF4]) + N-butylpyridinium tetrafluoroborate ([bpy][BF4]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) + N-butylpyridinium tetrafluoroborate ([bpy][BF4]) were measured over the entire mole fraction from T = (298.15 to 343.15) K. The excess molar volumes were calculated and correlated by Redlich–Kiser polynomial expansions. The viscosities for pure ionic liquids were analyzed by means of the Vogel–Tammann–Fulcher equation and ideal mixing rules were applied for the ILs mixtures.  相似文献   

12.
The interfacial structures of cyano-based room-temperature ionic liquids play a very important role in reducing friction. However, the presence of water impairs their tribological performance. The interfacial structures and friction forces of 1-ethyl-3-methylimidazolium dicyanamide, [EMIM][DCN], and the effect of water on these structures and forces were investigated using atomic force microscopy. In addition, the interaction of water and [EMIM][DCN] was evaluated using Fourier-transform infrared (FT-IR) spectroscopy. Multiple repulsive layers were observed in the [EMIM][DCN] solution. This solution showed low friction force because these repulsive layers worked as protective layers against friction. On the other hand, the specific repulsive layer characteristics of [EMIM][DCN] could not be observed in a [EMIM][DCN] + 2 wt% H2O solution. FT-IR results indicated that the layer structure of [EMIM][DCN] was disturbed by the addition of H2O. Therefore, the solution containing water exhibited a high friction force.  相似文献   

13.
New experimental data of densities and surface tensions are presented for the binary mixtures of the ionic liquid 1-ethyl-3- methyl imidazolium nitrate([EMIM]NO3) with methanol and ethanol.Measurements were performed at 298.15 K and atmospheric pressure,covering the whole composition range.Excess molar volumes VE and the surface tension deviations Sy have been determined.For the excess molar volumes of binary mixture,there is a region of negative VE at low IL mole fraction,passing through a minimum and then VE increases and becomes positive,showing maximum at higher IL mole fraction.It is shown that the surface tension deviations Sy of[EMIM]NO3 + methanol system are positive but those of[EMIM]NO3 + ethanol system are negative over the entire mole fraction range.  相似文献   

14.
Ha SH  Mai NL  Koo YM 《Journal of chromatography. A》2010,1217(49):7638-7641
Microwave-assisted separation has been applied to recover ionic liquid (IL) from its aqueous solution as an efficient method with respect to time and energy compared to the conventional vacuum distillation. Hydrophilic ILs such as 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]), 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([Bmim][TfO]) and 1-ethyl-3-methylimidazolium methylsulfate ([Emim][MS]) could be recovered in 6 min from the mixture of ILs and water (1:1, w/w) under microwave irradiation at constant power of 10 W while it took at least 240 min to obtain ILs containing same water content (less than 0.5 wt%) by conventional vacuum oven at 363.15 K with 90 kPa of vacuum pressure. Energy consumptions per gram of evaporated water from the homogeneous mixture of hydrophilic ILs and water (1:1, w/w) by microwave-assisted separation were at least 52 times more efficient than those in conventional vacuum oven. It demonstrated that microwave-assisted separation could be used for complete recovery of ILs in sense of time and energy as well as relevant purity.  相似文献   

15.
Multinuclear ((1)H, (31)P, (19)F and (11)B) diffusion ordered spectroscopy (DOSY) technique has been applied to palladium nanoparticles systems dispersed in ionic liquids (ILs). Even if the nanoparticles themselves cannot be detected through NMR, observation of the solvent (methanol) and the IL ([BMI][PF(6)] or [BMI][NTf(2)]), their diffusion coefficients and their changes in the presence of nanoparticles allow us to draw significant assumptions about the organisation of palladium nanoparticles in the IL. For comparison, the corresponding molecular precursors ([PdCl(2)(cod)] or [Pd(2)(dba)(3)]) have been also studied.  相似文献   

16.
Room temperature ionic liquids are rapidly emerging as a new class of media that are ideally suited for various applications including carrying out chemical reactions. In the present article, we report the photophysics of a β-carboline analogue, namely, 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolizine (AODIQ), in three room temperature ionic liquids (RTILs), 1-butyl-3-methylimidazolium methyl sulfate ([BMIM][MeSO(4)]), 1-butyl-3-methylimidazolium octyl sulfate ([BMIM][C(8)SO(4)]) and 1-ethyl-3-methylimidazolium methyl sulfate ([EMIM][MeSO(4)]). Out of these, [BMIM][C(8)SO(4)] is a typical RTIL that forms micellar aggregates above a critical micellar concentration (CMC). Steady state absorption, steady state and time resolved fluorescence techniques are used to probe the properties of these systems. The investigation reveals that the photophysics of AODIQ is modified significantly in the micelle-forming RTIL as compared to that in the other two. A comparative study with the fluorophore in [BMIM][C(8)SO(4)] and a conventional anionic surfactant of a similar hydrophobic chain length from the sodium-n-alkyl sulfate series, viz., sodium octyl sulfate (S(8)S), reveals that the fluorophore experiences a more constrained environment in the RTIL micelle as compared to the conventional anionic micelle.  相似文献   

17.
In this study, the structures and dynamics of ionic liquids of 1-allyl-3-methylimidazolium chloride ([AMIM][Cl]) and 1-n-butyl-3-methylimidazolium chloride ([BMIM][Cl]) were studied by dynamic light scattering with polarized and depolarized geometries in the temperature range from 300 to 400 K. The temperature range covered supercooled and liquid states for [BMIM][Cl] and covered the liquid state for [AMIM][Cl]. The results show that for these ionic liquids at all chosen temperatures only one ultraslow relaxation is observed in the polarized component of dynamic light scattering, however, the ultraslow relaxation is not observed in the depolarized component. The ultraslow relaxation exhibited several typical features of the "cluster" mode generally found in glass-forming liquids and polymer melts, such as diffusive, strongly scattering-vector-dependent, and nearly exponential characters, which thus corresponded to long-range density fluctuations. The physical origin for long-range density fluctuations was the existence of heterogeneities with large characteristic length scales in these ionic liquids. It was further considered that molecules of these ionic liquids not only tended to aggregate to form dynamic clusters but also possibly formed dynamic networks in the supercooled state and the heterogeneities could exist even at temperatures higher than the melting points.  相似文献   

18.
The density, viscosity and conductivity of ionic liquids (ILs), 1-octyl-3-methylimidazolium tetrafluoroborate ([omim][BF4]), 1-octyl-3-methylimidazolium chloride ([omim][Cl]), 1-hexyl-3-methylimidazolium tetrafluoroborate ([hmim] BF4]), 1-hexyl- 3-methylimidazolium chloride ([hmim][Cl]), 1-hexyl-3-methylimidazolium hexafluorophosphate ([hmim][PF6]), and the [omim][BF4] + [omim][Cl], [hmim][BF4] + [hmim][Cl], and [hmim][PF6] + [hmim][Cl] binary mixtures were studied at dif- ferent temperatures. It was demonstrated that the densities of both the neat ILs and their mixtures varied linearly with temper- ature. The density sensitivity of a binary mixture is between those of the two components. The excess molar volumes (VE) of [hmim][BF4] + [hmim][Cl] and [hmim][PF6] + [hmim][Cl] mixtures are positive in the whole composition range. For [omim][BF4] + [omim][Cl], the VE is also positive in the [omim][Cl]-rich region, but is negative in the [omim][BF4]-rich re- gion. The viscosity or conductivity of a mixture is in the intermediate of those of the two neat ILs. For all the neat ILs and the binary mixtures studied, the order of conductivity is opposite to that of the viscosity. The Vogel-Tammann-Fulcher (VTF) equations can be used to fit the viscosity and conductivity of all the neat ILs and the binary mixtures. The neat ILs and their mixtures obey the Fractional Walden Rule very well, and the values of the Walden slopes are all smaller than unit, indicating obvious ion associations in the neat ILs and the binary mixtures.  相似文献   

19.
Physicochemical properties of aqueous micellar solutions may change in the presence of ionic liquids (ILs). Micelles help to increase the aqueous solubility of ILs. The average size of the micellar aggregates within aqueous sodium dodecylbenzene sulfonate (SDBS) is observed by dynamic light scattering (DLS) and transmission electron microscopy (TEM) to increase in a sudden and drastic fashion as the IL 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)]) is added. Similar addition of [bmim][PF(6)] to aqueous sodium dodecyl sulfate (SDS) results in only a slow gradual increase in average aggregate size. While addition of the IL [bmim][BF(4)] also gives rise to sudden aggregate size enhancement within aqueous SDBS, the IL 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF(4)]), and inorganic salts NaPF(6) and NaBF(4), only gradually increase the assembly size upon their addition. Bulk dynamic viscosity, microviscosity, dipolarity (indicated by the fluorescent reporter pyrene), zeta potential, and electrical conductance measurements were taken to gain insight into this unusual size enhancement. It is proposed that bmim(+) cations of the IL undergo Coulombic attractive interactions with anionic headgroups at the micellar surface at all [bmim][PF(6)] concentrations in aqueous SDS; in aqueous SDBS, beyond a critical IL concentration, bmim(+) becomes involved in cation-π interaction with the phenyl moiety of SDBS within micellar aggregates with the butyl group aligned along the alkyl chain of the surfactant. This relocation of bmim(+) results in an unprecedented size increase in micellar aggregates. Aromaticity of the IL cation alongside the presence of sufficiently aliphatic (butyl or longer) alkyl chains on the IL appear to be essential for this dramatic critical expansion in self-assembly dimensions within aqueous SDBS.  相似文献   

20.
The density, refractive index, interfacial tension, and viscosity of ionic liquids (ILs) [EMIM][EtSO 4] (1-ethyl-3-methylimidazolium ethylsulfate), [EMIM][NTf 2] (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), [EMIM][N(CN) 2] (1-ethyl-3-methylimidazolium dicyanimide), and [OMA][NTf 2] (trioctylmethylammonium bis(trifluoromethylsulfonyl)imide) were studied in dependence on temperature at atmospheric pressure both by conventional techniques and by surface light scattering (SLS). A vibrating tube densimeter was used for the measurement of density at temperatures from (273.15 to 363.15) K and the results have an expanded uncertainty ( k = 2) of +/-0.02%. Using an Abbe refractometer, the refractive index was measured for temperatures between (283.15 and 313.15) K with an expanded uncertainty ( k = 2) of about +/-0.0005. The interfacial tension was obtained from the pendant drop technique at a temperature of 293.15 K with an expanded uncertainty ( k = 2) of +/-1%. For higher and lower temperatures, the interfacial tension was estimated by an adequate prediction scheme based on the datum at 293.15 K and the temperature dependence of density. For the ILs studied within this work, at a first order approximation, the quantity directly accessible by the SLS technique was the ratio of surface tension to dynamic viscosity. By combining the experimental results of the SLS technique with density and interfacial tension from conventional techniques, the dynamic viscosity could be obtained for temperatures between (273.15 and 333.15) K with an estimated expanded uncertainty ( k = 2) of less than +/-3%. The measured density, refractive index, and viscosity are represented by interpolating expressions with differences between the experimental and calculated values that are comparable with but always smaller than the expanded uncertainties ( k = 2). Besides a comparison with the literature, the influence of structural variations on the thermophysical properties of the ILs is discussed in detail. The viscosities mostly agree with values reported in the literature within the combined estimated expanded uncertainties ( k = 2) of the measurements while our density and interfacial tension data differ by more than +/-1% and +/-5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号