首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 586 毫秒
1.
The ability to select, amplify, and lock dynamic equilibria is of great interest into understanding and applying chiral systems in Nature. The dynamic equilibrium between P and M helicity of a nonchiral diarylethene switch 3 could selectively be coaggregated in the gel state by complementary chiral switches 1 and 2 (that itself is also subjected to the same equilibrium between P and M helicity). Enantiomeric excess as high as 94% was observed during this dual task for 1 and 2 (arranging itself and 3 in only one conformation during aggregation). Interestingly, opposite chiral induction was observed, although the conformation of both 1 and 2 is R.  相似文献   

2.
Optically active polyisocyanides (poly(iminomethylenes)) have been prepared with much interest in developing new functional materials. Polyisocyanides have been considered to have a stable 4(1) helical conformation even in solution when they have a bulky side group. However, the conformational characteristics of poly(phenyl isocyanide) (PPI) derivatives are still under debate. We now report that an optically inactive PPI derivative, poly(4-carboxyphenyl isocyanide) (poly-1), shows optical activity in the polymer backbone induced by external, chiral stimuli through acid-base interactions under thermodynamic control and exhibits induced circular dichroism (ICD) in the UV-visible region in DMSO. The ICD intensities of the poly-1-chiral amine complexes in DMSO gradually increased with time, and, in one case, the value reached 3 times that of the original value after 2 months at 30 degrees C. The conformational changes also occurred very slowly for poly-1 alone and its ethyl ester with time on the basis of (1)H NMR spectroscopic analysis. These results indicate that PPIs bearing a less bulky substituent may not have a 4(1) helical conformation but have a different type of prochiral conformation, for instance, an s-trans (zigzag) structure which may transform to a dynamic, one-handed helical conformation when the PPIs have a functional group capable of interacting with chiral compounds. The mechanism of helicity induction on poly-1 through a dynamic conformational transition is discussed on the basis of the above results together with molecular dynamic simulation results for PPI.  相似文献   

3.
Peptides, the fundamental building units of biological systems, are chiral in molecular scale as well as in spatial conformation. Shells are exquisite examples of well‐defined chiral structures produced by natural biomineralization. However, the fundamental mechanism of chirality expressed in biological organisms remains unclear. Here, we present a system that mimics natural biomineralization and produces enantiopure chiral inorganic materials with controllable helicity. By tuning the hydrophilicity of the amphiphilic peptides, the chiral morphologies and mesostructures can be changed. With decreasing hydrophilicity of the amphiphilic peptides, we observed that the nanostructures changed from twisted nanofibers with a hexagonal mesostructure to twisted nanoribbons with a lamellar mesostructure, and the extent of the helicity decreased. Defining the mechanism of chiral inorganic materials formed from peptides by noncovalent interactions can improve strategies toward the bottom‐up synthesis of nanomaterials as well as in the field of bioengineering.  相似文献   

4.
Unique macromolecular helicity inversion of stereoregular, optically active poly(phenylacetylene) derivatives induced by external achiral and chiral stimuli is briefly reviewed. Stereoregular, cis-transoidal poly(phenylacetylene)s bearing an optically active substituent, such as (1R,2S)-norephedrine (poly- 1 ) and β-cyclodextrin residues (poly- 2 ), show an induced circular dichroism (ICD) in the UV-visible region of the polymer backbone in solution due to a predominantly one-handed helical conformation of the polymers. However, poly- 1 undergoes a helix-helix transition upon complexation with chiral acids having an R configuration, and the complexes exhibit a dramatic change in the ICD of poly- 1 . Poly- 2 also shows the inversion of macromolecular helicity responding to molecular and chiral recognition events that occurred at the remote cyclodextrin residues from the polymer backbone; the helicity inversion is accompanied by a visible color change. A similar helix-helix transition of poly((R)- or (S)-(4-((1-(1-naphthyl)ethyl)carbamoyl)phenyl)acetylene) is also briefly described.  相似文献   

5.
A novel, cistransoidal poly‐(phenylacetylene) bearing a carboxybiphenyl group as the pendant (poly‐ 1 ) was prepared by polymerization of (4′‐ethoxycarbonyl‐4‐biphenylyl)acetylene with a rhodium catalyst followed by hydrolysis of the ester groups. Upon complexation with various chiral amines and amino alcohols in dimethyl sulfoxide (DMSO), the polymer exhibited characteristic induced circular dichroism (ICD) in the UV/Vis region due to the predominantly one‐handed helix formation of the polymer backbone as well as an excess of a single‐handed, axially twisted conformation of the pendant biphenyl group. Poly‐ 1 complexed with (R)‐2‐amino‐1‐propanol showed unique time‐dependent inversion of the macromolecular helicity. Furthermore, the preferred‐handed helical conformation of poly‐ 1 induced by a chiral amine was further “memorized” after the chiral amine was replaced with achiral 2‐aminoethanol or n‐butylamine in DMSO. In sharp contrast to the previously reported memory in poly((4‐carboxyphenyl)acetylene), the present helicity memory of poly‐ 1 was accompanied by memory of the twisted biphenyl chirality in the pendants. Unprecedentedly, the helicity memory of poly‐ 1 with achiral 2‐aminoethanol was found to occur simultaneously with inversion of the axial chirality of the biphenyl groups followed by memory of the inverted biphenyl chirality, thus showing a significant change in the CD spectral pattern.  相似文献   

6.
Recently, novel chiral interactions on 3(10)-helical peptides, of which the helicity is controlled by external chiral stimulus operating on the N-terminus, were proposed as a "noncovalent chiral domino effect (NCDE)" (Inai, Y.; et al. J. Am. Chem. Soc. 2000, 122, 11731. Inai, Y.; et al. J. Am. Chem. Soc. 2002, 124, 2466). The present study clarifies the mechanism for generating the NCDE. For this purpose, achiral nonapeptide (1), H-beta-Ala-(Delta(Z)Phe-Aib)(4)-OMe [Delta(Z)Phe = (Z)-didehydrophenylalanine, Aib = alpha-aminoisobutyric acid], was synthesized. Peptide 1 alone adopts a 3(10)-helical conformation in chloroform. On the basis of the induced CD signals of peptide 1 with chiral additives, chiral acid enabling the predominant formation of a one-handed helix was shown to need at least both carboxyl and urethane groups; that is, Boc-l-amino acid (Boc = tert-butoxycarbonyl) strongly induces a right-handed helix. NMR studies (NH resonance variations, low-temperature measurement, and NOESY) were performed for a CDCl(3) solution of peptide 1 and chiral additive, supporting the view that the N-terminal H-beta-Ala-Delta(Z)Phe-Aib, including the two free amide NH's, captures effectively a Boc-amino acid molecule through three-point interactions. The H-beta-Ala's amino group binds to the carboxyl group to form a salt bridge, while the Aib(3) NH is hydrogen-bonded to either oxygen of the carboxylate group. Subsequently, the free Delta(Z)Phe(2) NH forms a hydrogen bond to the urethane carbonyl oxygen. A semiempirical molecular orbital computation explicitly demonstrated that the dynamic looping complexation is energetically permitted and that the N-terminal segment of a right-handed 3(10)-helix binds more favorably to a Boc-l-amino acid than to the corresponding d-species. In conclusion, the N-terminal segment of a 3(10)-helix, ubiquitous in natural proteins and peptides, possesses the potency of chiral recognition in the backbone itself, furthermore enabling the conversion of the terminally acquired chiral sign and power into a dynamic control of the original helicity and helical stability.  相似文献   

7.
A novel approach for reversibly switching the conformation of short constraint λ-helical peptides through chemselective alkylation of the in-tether thioether and dealkylation of the chiral sulfonium was developed and it provides a valuable modifiable site to functionalize the peptides.  相似文献   

8.
As a novel polymer adsorbent for optical resolution, cross-linked polystyrene gel incorporating poly(α-amino acids) was synthesized. The helicity of the incorporated poly(γ-benzyl L -glutamate) (PBLG) was demonstrated by Fourier-transform infrared spectroscopy. The immobilized PBLG ( I ) was converted to poly(L -glutamic acid) ( II ) and poly(N5-benzyl-L -glutamine) ( III ). The ability of I - III to resolve DL-mandelic acid was evaluated by liquid chromatography using toluene/dioxane as an eluent. Of the three resins, III resolves the recemate most effectively. In order to clarify the mechanism of chiral recognition, poly(N5-benzyl-D -glutamine) and poly(N4-benzyl-L -asparagine), with opposite helicity, was incorporated. In Contrast to III , these adsorbents demonstrated affinity for the L isomer. This result strongly indicates that the helical structure of the immobilized poly(α-amino acids) is essential for chiral recognition.  相似文献   

9.
以苯基二氯化膦和薄荷基甲酸为原料, 合成了一种手性双酰基膦氧化物光引发剂(-)-双(薄荷基甲酰基)苯基氧化膦. 采用核磁共振谱、 质谱及元素分析确定了该化合物的结构, 并测定了其螺旋诱导能力. 结果表明, (-)-BMPPO在引发自由基光聚合大位阻的单体甲基丙烯酸-1-苯基二苯并环庚酯(PDBSMA)的反应中具有螺旋选择性. 所得聚合物具有高度全同结构并显示出光学活性, 说明该聚合物形成了稳定的单手性螺旋链构象. 降低单体与引发剂的投料比及提高聚合温度有利于增加反应的螺旋选择性. 在手性薄荷醇溶剂中, 由(2,4,6-三甲基苯甲酰基)二苯基氧化膦(TPO)引发单体PDBSMA的光聚合反应也具有螺旋选择性, 但螺旋选择性很小.  相似文献   

10.
We have found a simple and novel synthetic method for obtaining a chiral polymer from an achiral monomer by using a chiral catalytic system. The chirality of the polymer was caused only by a one-handed helical backbone, and the polymer had no other chiral structures in the side groups. In addition, the helical conformation was stable in solution by itself. This is the first example of helix-sense-selective polymerization of a substituted acetylene. The stability of the helicity was found to be caused by intramolecular hydrogen bonds.  相似文献   

11.
Helicity of single-helical metal complexes, [L1Zn3La]3+ and [L2Zn2La]3+, was dynamically controlled by coordination of chiral carboxylate ions such as mandelate ion. Spectroscopic investigation indicated that two chiral carboxylate ions contribute to the dynamic helicity control. In addition, the coordination of the carboxylate ions resulted in a nonlinear response in the dynamic helicity control.  相似文献   

12.
A poly(phenylacetylene) bearing a phosphonic acid monoethyl ester as the pendant forms a one-handed helical structure induced by an optically active amine, and this helicity can be "memorized"after the amine is replaced by achiral diamines. The helicity memory lasts for an extremely long time but spontaneously disappears after the achiral diamines are removed by a stronger acid, indicating the dynamic nature of the helicity memory. Here we report that such a dynamic memory could be "stored" after the pendant was converted to its methyl ester with diazomethane, resulting in the generation of a phosphorus stereogenic center with optical activity. The esterification enantioselectively proceeded through chirality transfer from the induced helical conformation or the helicity memory of the polyacetylene backbone. Although the enantioselectivity was low, the pendant chirality was significantly amplified in the polymer backbone at low temperatures, resulting in higher optical activity as an excess single-handed helix than that expected from the enantiomeric excess of the pendants.  相似文献   

13.
A benzene/naphthalene alternately incorporated amide polymer was synthesized and characterized. 1H NMR spectroscopy, fluorescence, and circular dichroism (CD) experiments indicated that, in chloroform, the polymer could be induced by the chiral l ‐aspartic acid dianion or one of its derivatives to form a helical tubular conformation with twist‐sense bias. CD titration studies showed that the l ‐aspartic acid dianion (8 equiv.) could lead to a maximum Cotton effect. It was also revealed that the twist‐sense bias obeyed the majority rule, and 70 % enantiomeric excess could realize the maximum helicity bias. Adding acetonitrile to the solution of chloroform caused inversion of the guest‐induced helicity bias of the polymer.  相似文献   

14.
Novel poly(biphenylylacetylene) derivatives carrying different types of pyridine N‐oxide units with a bulky or less‐bulky substituent at a different position as the functional pendant groups (poly‐ 2a and poly‐ 2b ) were synthesized by the rhodium‐catalyzed polymerization of the corresponding monomers. The influence of the steric environment around the catalytically active pyridine N‐oxide sites on the helicity induction and its static memory as well as the asymmetric catalytic activities of the resulting helical polymers with a macromolecular helicity memory was investigated. The polyacetylenes formed an excess one‐handed helical conformation upon noncovalent interactions with optically active alcohols and the induced macromolecular helicities of the polyacetylenes were efficiently memorized after the removal of the chiral inducers. Poly‐ 2b with the macromolecular helicity memory showed an enantioselectivity for the catalytic asymmetric allylation of benzaldehydes, producing optically active allyl alcohols, although their enantioselectivities were low. On the other hand, poly‐ 2a exhibited a negligible catalytic activity probably due to the bulky substituent at the o‐position of the pyridine N‐oxide residues, while poly‐ 2a underwent a unique helix‐inversion with the increasing concentration of chiral alcohols and the opposite helicity of poly‐ 2a was further successfully memorized. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2481–2490  相似文献   

15.
We report an ultra-fast helix induction and subsequent static helicity memory in poly(biphenylylacetylene) (PBPA- A ) assisted by a catalytic amount of nonracemic ammonium salts comprised of non-coordinating tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BArF) as a counter anion. The remarkable acceleration of the helix-induction rate in PBPA- A accompanied by the significant amplification of the asymmetry relies on the two methoxymethoxy groups of the biphenyl pendants, which can gain access to enfold the chiral ammoniums in a crown-ether manner in specific aromatic solvents, leading to ultra-fast helicity induction, which is completed within 30 s. In aromatic solvents, helicity memory is lost rapidly, but is quite stable in long-chain hydrocarbons. The best use of specific solvents for helicity induction and static helicity memory, respectively, provides a highly sensitive chirality sensing system toward a small amount of chiral amines and amino acids when complexed with BArF.  相似文献   

16.
Left or right handed alpha helicity can be induced in a pentapeptide (ANGYG) by appending left or right handed helical cycles as chiral templates. This sequence corresponds to a rare left handed helix found in the protein alanine racemase. Circular dichroism spectra reveal that pentapeptide ANGYG has no detectable structure in aq phosphate buffer, that it is an ambidextrous peptide in that it can be directed to fold into either a left handed or right handed alpha helix in water, with greater propensity for the uncommon left handed than the normal right handed conformation. A helix-inducing cyclic peptide at both ends of this peptide was more effective at inducing alpha helicity than a single cyclic peptide at one end. The alpha helical cyclic peptides provide novel tools for folding short peptides into thermodynamically unstable helices in water, and for studying factors that control chirality and helix induction.  相似文献   

17.
Chiral groups attached to the end of quinoline-derived oligoamide foldamers give rise to chiral helical induction in solution. Using various chiral groups, diastereomeric excesses ranging from 9% to 83% could be measured by NMR and circular dichroism. Despite these relatively weak values and the fact that diastereomeric helices coexist and interconvert in solution, the right-handed or left-handed helical sense favored by the terminal chiral group could be determined unambiguously using X-ray crystallography. Assignment of chiral induction was performed in an original way using the strong tendency of racemates to cocrystallize, and taking advantage of slow helix inversion rates, which allowed one to establish that the stereomers observed in the crystals do correspond to the major stereomers in solution. The sense of chiral helical induction was rationalized on the basis of sterics. Upon assigning an Rs or Ss chirality to the stereogenic center using a nomenclature where the four substituents are ranked according to decreasing sizes, it is observed that Rs chirality always favors left-handed helicity and Ss chirality favors right-handed helicity (P). X-ray structures shed some light on the role of sterics in the mechanism of chiral induction. The preferred conformation at the stereocenter is apparently one where the bulkiest group should preferentially point away from the helix, the second largest group should be aligned with the helix backbone, and the smallest should point to the helix.  相似文献   

18.
Yang Q  Olmsted C  Borhan B 《Organic letters》2002,4(20):3423-3426
Monoamidation of 1,4-diaminobenzene with alpha-chiral carboxylic acids leads to a carrier strategy for absolute stereochemical determination with bis-zinc porphyrin tweezers by exciton-coupled circular dichroism (ECCD). The helicity induced in the porphyrin tweezers upon complexation with the derivatized carrier originates from the preferred conformation of the C(carbonyl)-C(chiral) bond. Correct ECCD signs can be predicted by the rotamer that places the large group perpendicular to the carbonyl group with the small group facing the porphyrin. [reaction: see text]  相似文献   

19.
The self-assemblying behaviors of L-alanine methyl ester-containing polyphenylacetylene (PPA-Ala, in Chart 1 ) were investigated upon the evaporation of its solvent on mica and on air/water interfaces. The introduction of chiral amino acid attachments to the polyphenylacetylene backbone induced a helical conformation of the backbone, which was stabilized by various noncovalent interactions, especially hydrophobic effect and hydrogen bonds. The helicity of the polymer was further amplified in its higher-order self-assemblies as the formation of helical fibers on the surface of mica upon natural evaporation of its THF solution. By LB technique, the polymer chains were guided to form ordered parallel ridges and highly aligned, with their helical conformation still remaining. The reorganization of the chiral polymer chains on air/water interface was associated with the additional hydrophobic effect of PPA-Ala on an air/water interface. The polymer backbones had to adopt different arrangements to minimize their contact with water, and this adjustment led to the formation of aligned polymer ridges under proper surface pressure.  相似文献   

20.
The addition of a precisely positioned chiral center in the tether of a constrained peptide is reported, yielding two separable peptide diastereomers with significantly different helicity, as supported by circular dichroism (CD) and NMR spectroscopy. Single crystal X‐ray diffraction analysis suggests that the absolute configuration of the in‐tether chiral center in helical form is R, which is in agreement with theoretical simulations. The relationship between the secondary structure of the short peptides and their biochemical/biophysical properties remains elusive, largely because of the lack of proper controls. The present strategy provides the only method for investigating the influence of solely conformational differences upon the biochemical/biophysical properties of peptides. The significant differences in permeability and target binding affinity between the peptide diastereomers demonstrate the importance of helical conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号