首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here, we explore a de novo sequencing strategy in which we combine Lys-N protein digestion with differential isotopic dimethyl labeling to facilitate the (de novo) identification of multiply charged peptides in ESI-MS, both under CID and ETD conditions. For a large fraction of the Lys-N generated peptides, all primary amines are present at the N-terminal lysine, enabling specific labeling of the N-terminus. Differential derivatization of only the peptide N-terminus in combination with the simultaneous fragmentation of the corresponding isotopologues allows the straightforward distinction of N-terminal fragments from C-terminal and internal fragments. Furthermore, also singly and multiply charged N-terminal fragments can easily be distinguished due to the mass differences of the isotope labeled fragment pairs. As a proof of concept, we applied this approach to proteins isolated from an avocado fruit, and were able to partially de novo sequence and correctly align, with green plant homologues, a previously uncharacterized avocado ascorbate peroxidase.  相似文献   

2.
Various peptide modifications have been explored recently to facilitate the acquisition of sequence information. N-terminal sulfonation is an interesting modification because it allows unambiguous de novo sequencing of peptides, especially in conjunction with MALDI-PSD-TOF analysis; such modified peptide ions undergo fragmentation at energies lower than those required conventionally for unmodified peptide ions. In this study, we systematically investigated the fragmentation mechanisms of N-terminal sulfonated peptide ions prepared using two different N-terminal sulfonation reagents: 4-sulfophenyl isothiocyanate (SPITC) and 4-chlorosulfophenyl isocyanate (SPC). Collision-induced dissociation (CID) of the SPC-modified peptide ions produced a set of y-series ions that were more evenly distributed relative to those observed for the SPITC-modified peptides; y(n-1) ion peaks were consistently and significantly larger than the signals of the other y-ions. We experimentally investigated the differences between the dissociation energies of the SPITC- and SPC-modified peptide ions by comparing the MS/MS spectra of the complexes formed between the crown ether 18-crown-6 (CE) and the modified peptides. Upon CID, the complexes formed between 18-crown-6 ether and the protonated amino groups of C-terminal lysine residues underwent either peptide backbone fragmentation or complex dissociation. Although the crown ether complexes of the unmodified ([M + CE + 2H]2+) and SPC-modified ([M* + CE + 2H]2+) peptides underwent predominantly noncovalent complex dissociation upon CID, the low-energy dissociations of the crown ether complexes of the SPITC-modified peptides ([M' + CE + 2H]2+) unexpectedly resulted in peptide backbone fragmentations, along with a degree of complex dissociation. We performed quantum mechanical calculations to address the energetics of fragmentations observed for the modified peptides.  相似文献   

3.
SeqMS, a software aid for de novo sequencing by tandem mass spectrometry (MS/MS), which was initially developed for the automated interpretation of high-energy collision-induced dissociation (CID) MS/MS spectra of peptides, has been applied to the interpretation of low-energy CID and post-source decay (PSD) spectra of peptides. Based on peptide backbone fragmented ions and their related ions, which are the dominant ions observed in the latter two techniques, the types of ions and their propensities to be observed have been optimized for efficient interpretation of the spectra. In a typical example, the modified SeqMS allowed the complete sequencing of a 31-amino acid synthetic peptide, except for the isobaric amino acids (Leu or Ile, and Lys or Gln), based on only the low-energy CID-MS/MS spectrum.  相似文献   

4.
Matrix-assisted laser desorption ionization (MALDI), Peptide Mass Fingerprinting (PMF) and MALDI-MS/MS ion search (using MASCOT) have become the preferred methods for high-throughput identification of proteins. Unfortunately, PMF can be ambiguous, mainly when the genome of the organism under investigation is unknown and the quality of spectra generated is poor and does not allow confident identification. The post-source decay (PSD) fragmentation of singly charged tryptic peptide ions generated by MALDI-TOF/TOF typically results in low fragmentation efficiency and/or complex spectra, including backbone fragmentation ions (series b and y), internal fragmentation etc. Interpreting these data either manually and/or using de novo sequencing software can frequently be a challenge. To overcome this limitation when studying the proteome of adult Angiostrongylus costaricensis, a nematode with unknown genome, we have used chemical N-terminal derivatization of the tryptic peptides with 4-sulfophenyl isothiocyanate (SPITC) prior to MALDI-TOF/TOF MS. This methodology has recently been reported to enhance the quality of MALDI-TOF/TOF-PSD data, allowing the obtainment of complete sequence of most of the peptides and thus facilitating de novo peptide sequencing. Our approach, consisting of SPITC derivatization along with manual spectra interpretation and Blast analysis, was able to positively identify 76% of analyzed samples, whereas MASCOT analysis of derivatized samples, MASCOT analysis of nonderivatized samples and PMF of nonderivatized samples yielded only 35, 41 and 12% positive identifications, respectively. Moreover, de novo sequencing of SPITC modified peptides resulted in protein sequences not available in NCBInr database paving the way to the discovery of new protein molecules.  相似文献   

5.
Matrix-assisted laser desorption ionization (MALDI), Peptide Mass Fingerprinting (PMF) and MALDI-MS/MS ion search (using MASCOT) have become the preferred methods for high-throughput identification of proteins. Unfortunately, PMF can be ambiguous, mainly when the genome of the organism under investigation is unknown and the quality of spectra generated is poor and does not allow confident identification. The post-source decay (PSD) fragmentation of singly charged tryptic peptide ions generated by MALDI-TOF/TOF typically results in low fragmentation efficiency and/or complex spectra, including backbone fragmentation ions (series b and y), internal fragmentation etc. Interpreting these data either manually and/or using de novo sequencing software can frequently be a challenge. To overcome this limitation when studying the proteome of adult Angiostrongylus costaricensis, a nematode with unknown genome, we have used chemical N-terminal derivatization of the tryptic peptides with 4-sulfophenyl isothiocyanate (SPITC) prior to MALDI-TOF/TOF MS. This methodology has recently been reported to enhance the quality of MALDI-TOF/TOF-PSD data, allowing the obtainment of complete sequence of most of the peptides and thus facilitating de novo peptide sequencing. Our approach, consisting of SPITC derivatization along with manual spectra interpretation and Blast analysis, was able to positively identify 76% of analyzed samples, whereas MASCOT analysis of derivatized samples, MASCOT analysis of nonderivatized samples and PMF of nonderivatized samples yielded only 35, 41 and 12% positive identifications, respectively. Moreover, de novo sequencing of SPITC modified peptides resulted in protein sequences not available in NCBInr database paving the way to the discovery of new protein molecules.  相似文献   

6.
The simplicity and sensitivity of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry have increased its application in recent years. The most common method of "peptide mass fingerprint" analysis often does not provide robust identification. Additional sequence information, obtained by post-source decay or collision induced dissociation, provides additional constraints for database searches. However, de novo sequencing by mass spectrometry is not yet common practice, most likely because of the difficulties associated with the interpretation of high and low energy CID spectra. Success with this type of sequencing requires full sequence coverage and demands better quality spectra than those typically used for data base searching. In this report we show that full-length de novo sequencing is possible using MALDI TOF/TOF analysis. The interpretation of MS/MS data is facilitated by N-terminal sulfonation after protection of lysine side chains (Keough et al., Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 7131-7136). Reliable de novo sequence analysis has been obtained using sub-picomol quantities of peptides and peptide sequences of up to 16 amino acid residues in length have been determined. The simple, predictable fragmentation pattern allows routine de novo interpretation, either manually or using software. Characterization of the complete primary structure of a peptide is often hindered because of differences in fragmentation efficiencies and in specific fragmentation patterns for different peptides. These differences are controlled by various structural parameters including the nature of the residues present. The influence of the presence of internal Pro, acidic and basic residues on the TOF/TOF fragmentation pattern will be discussed, both for underivatized and guanidinated/sulfonated peptides.  相似文献   

7.
The fragmentation of the multiply charged peptides b-chain of bovine insulin and glucagon have been investigated under low energy collision induced dissociation (CID) conditions using an electrospray ion trap mass spectrometer. The influence of charge state, specific amino acids such as aspartate or proline, the location of basic sites, and the derivatization on the fragmentation behavior has been the focus of interest. As a basis for understanding the fragmentation process, the concept of the mobile proton was applied. A set of different derivatives was used to manipulate the sites of protonation of the peptides in order to control and improve the fragmentation behavior. These results can be applied for de novo sequencing, although the sequence-specific fragmentation processes have significant influence on the dissociation behavior of the peptides.  相似文献   

8.
Chemical crosslinking combined with mass spectrometry is a useful tool for studying the topological organization of multiprotein interactions, but it is technically challenging to identify peptides involved in a crosslink using tandem mass spectrometry (MS/MS) due to the presence of product ions originating from both peptides within the same crosslink. We have previously developed a novel set of collision-induced dissociative chemical crosslinking reagents (CID-CXL reagents) that incorporate a labile bond within the linker which readily dissociates at a single site under low-energy collision-induced dissociation (CID) to enable independent isolation and sequencing of the crosslinked peptides by traditional MS/MS and database searching. Alternative low-energy CID events were developed within the in-source region by increasing the multipole DC offset voltage (ISCID) or within the ion trap by increasing the collisional excitation (ITCID). Both dissociation events, each having their unique advantages, occur without significant backbone fragmentation to the peptides, thus permitting subsequent CID to be applied to these distinct peptide ions for generation of suitable product ion spectra for database searching. Each approach was developed and applied to a chemical crosslinking study involving the N-terminal DNA-binding domain of AbrB (AbrBN), a transition-state regulator in Bacillus subtilis. A total of thirteen unique crosslinks were identified using the ITCID approach which represented a significant improvement over the eight unique crosslinks identified using the ISCID approach. The ability to segregate intrapeptide and interpeptide crosslinks using ITCID represents the first step towards high-throughput analysis of protein-protein crosslinks using our CID-CXL reagents.  相似文献   

9.
Thio-ether bonds in the cysteinyl side chain of peptides, formed with the most commonly used cysteine blocking reagent iodoacetamide, after conversion to sulfoxide, releases a neutral fragment mass in a low-energy MS/MS experiment in the gas phase of the mass spectrometer [6]. In this study, we show that the neutral loss fragments produced from the mono-oxidized thio-ether bonds (sulfoxide) in peptides, formed by alkyl halide or double-bond containing cysteine blocking reagents are different under low-energy MS/MS conditions. We have evaluated the low-energy fragmentation patterns of mono-oxidized modified peptides with different cysteine blocking reagents, such as iodoacetamide, 3-maleimidopropionic acid, and 4-vinylpyridine using FTICR-MS. We propose that the mechanisms of gas-phase fragmentation of mono-oxidized thio-ether bonds in the side chain of peptides, formed by iodoacetamide and double-bond containing cysteine blocking reagents, maleimide and vinylpyridine, are different because of the availability of acidic beta-hydrogens in these compounds. Moreover, we investigated the fragmentation characteristics of mono-oxidized thio-ether bonds within the peptide sequence to develop novel mass-spectrometry identifiable chemical cross-linkers. This methionine type of oxidized thio-ether bond within the peptide sequence did not show anticipated low-energy fragmentation. Electron capture dissociation (ECD) of the side chain thio-ether bond containing oxidized peptides was also studied. ECD spectra of the oxidized peptides showed a greater extent of peptide backbone cleavage, compared with CID spectra. This fragmentation information is critical to researchers for accurate data analysis of this undesired modification in proteomics research, as well as other methods that may utilize sulfoxide derivatives.  相似文献   

10.
Post source decay (PSD) analysis of precursor ions generated from matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry is a powerful tool for amino acid sequencing and primary structure analysis of proteins. N-Terminal sulfonation has become an effective derivatization strategy in facilitating de novo peptide sequencing by the formation of predominate y-type ion series in MALDI PSD spectra. Recently, an effective and inexpensive N-terminal derivatization method has been reported using 4-sulfophenyl isothiocyanate (SPITC) as the derivatization reagent (J. Mass. Spectrom. 2003; 38: 373-377). In this paper, we report an improvement in the derivatization procedure with this reagent that involves replacing an organic co-reagent with other chemicals and eliminating the use of organic solvent. The method is demonstrated on a model peptide and on tryptic digests of two proteins. The results indicate that the improved sulfonation reaction can be implemented with high efficiency under aqueous conditions and that the sensitivity of mass detection can be increased considerably.  相似文献   

11.
A series of synthetic peptides (3-15 residues), C-terminally derivatized with 4-aminonaphthalenesulfonic acid (ansa), have been analyzed on a hybrid magnetic sector-orthogonal acceleration time-of-flight tandem mass spectrometer, fitted with a nano-electrospray (nano-ES) interface. Deprotonated molecules generated by negative-ion ES were subjected to collision-induced dissociation (CID) using either methane or xenon as the collision gas, at a collision energy of 400 eV (laboratory frame of reference). As a consequence of charge localization on the sulfonate group, only C-terminal fragment ions were formed, presumably by charge-remote fragmentation mechanisms. Interpretable CID spectra were obtained from fmol amounts of the small peptides (up to 6 residues), whereas low pmol amounts were required for the larger peptides. CID spectra were also recorded of derivatized, previously noncharacterised peptides obtained by proteolysis of cytosolic hamster liver aldehyde dehydrogenase. Interpretation of these CID spectra was based on rules established for the fragmentation of the synthetic peptides. This study shows that derivatization with ansa may be useful in the de novo sequencing of peptides.  相似文献   

12.
Recently various methods for the N-terminal sulfonation of peptides have been developed for the mass spectrometric analyses of proteomic samples to facilitate de novo sequencing of the peptides produced. This paper describes the isotope-coded N-terminal sulfonation (ICenS) of peptides; this procedure allows both de novo peptide sequencing and quantitative proteomics to be studied simultaneously. As N-terminal sulfonation reagents, 13C-labeled 4-sulfophenyl[13C6]isothiocyanate (13C-SPITC) and unlabeled 4-sulfophenyl isothiocyanate (12C-SPITC) were synthesized. The experimental and reference peptide mixtures were derivatized independently using 13C-SPITC and 12C-SPITC and then combined to generate an isotopically labeled peptide mixture in which each isotopic pair differs in mass by 6 Da. Capillary reverse-phase liquid chromatography/tandem mass spectrometry experiments on the resulting peptide mixtures revealed several immediate advantages of ICenS in addition to the de novo sequencing capability of N-terminal sulfonation, namely, differentiation between N-terminal sulfonated peptides and unmodified peptides in mass spectra, differentiation between N- and C-terminal fragments in tandem mass spectra of multiply protonated peptides by comparing fragmentations of the isotopic pairs, and relative peptide quantification between proteome samples. We demonstrate that the combination of N-terminal sulfonation and isotope coding in the mass spectrometric analysis of proteomic samples is a viable method that overcomes many problems associated with current N-terminal sulfonation methods.  相似文献   

13.
A c1 ion was observed with significant yield in the tandem mass (MS/MS) spectra of peptide ions containing glutamine as the second amino acid residue from the N-terminus. The c1 fragment was generated independently of the N-terminal residue of the peptide, but its abundance was strongly dependent on the side-chain identity. This ion is not a common fragmentation product in low-energy collision-induced dissociation of peptide ions, but it assists in identification of the first two amino acid residues, often difficult due to a low or absent signal from the heaviest y ion. A consecutive fragmentation mechanism is proposed, involving a b2 ion with a six-membered ring as an intermediate, to explain the exceptional stability of the c1 fragment ion. The utility of this information is discussed, especially in de novo sequencing of peptide ions.  相似文献   

14.
We investigated the effect of N-terminal amino group and carboxyl group methylation on peptide analysis by electrospray mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS/MS). Permethylation of the N-terminal amino group and the carboxyl groups can reduce metal ion adducts but does not enhance sensitivity in electrospray as previously observed for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. N-terminal trimethylated peptides exhibit collision-induced dissociation (CID) tandem mass spectra that differ from their unmodified analogs; the results support the mobile proton hypothesis of peptide fragmentation. A permanent positive charge at the N-terminus leads to competition between permanent-charge directed processes and loss of the N-terminal trimethyl amino group. Carboxyl methylation has no effect on fragmentation behavior other than to shift the mass of fragments containing methylated carboxyl groups. Comparison of regular and tandem mass spectra of different methylated peptides allowed probing the location of incomplete methylation, the proton displaced by alkali metal ions and the purity of a mass-selected methylated peptide ion.  相似文献   

15.
Protein identification is routinely accomplished by peptide sequencing using mass spectrometry (MS) after enzymatic digestion. Site-specific chemical modification may improve peptide ionization efficiency or sequence coverage in mass spectrometry. We report herein that amino group of lysine residue in peptides can be selectively modified by reaction with a peroxycarbonate and the resulting lysine peroxycarbamates undergo homolytic fragmentation under conditions of low-energy collision-induced dissociation (CID) in electrospray ionization (ESI) and matrix-assisted laser desorption and ionization (MALDI) MS. Selective modification of lysine residue in peptides by our strategy can induce specific peptide cleavage at or near the lysine site. Studies using deuterated analogues of modified lysine indicate that fragmentation of the modified peptides involves apparent free-radical processes that lead to peptide chain fragmentation and side-chain loss. The formation of a-, c-, or z-types of ions in MS is reminiscent of the proposed free-radical mechanisms in low-energy electron capture dissociation (ECD) processes that may have better sequence coverage than that of the conventional CID method. This site-specific cleavage of peptides by free radical- promoted processes is feasible and such strategies may aid the protein sequencing analysis and have potential applications in top-down proteomics.  相似文献   

16.
A novel approach of seuqence pattern correlation has been applied to predict an expected amino acid sequence from CID ESI-MS spectra.The proposed approach deduces sequence patterns with no help form known protein database such that it is useful to identify an unknown petide or new protein.The algorithm applies a cross-correlation to match an experimental CID spectrum with predicted sequence pattern generated form fragmentation information.The fragmentation knowledge of both y-series and other non y-series are utilized to generate the predicted sequence patterns.In contrast to the normal de novo approach,the proposed approach is insensitive to mass tolerance and non-sussceptive to spectral integrality with no need for selection of a starting point.  相似文献   

17.
The gas-phase fragmentation mechanisms of small models for peptides containing intermolecular disulfide links have been studied using a combination of tandem mass spectrometry experiments, isotopic labeling, structural labeling, accurate mass measurements of product ions, and theoretical calculations (at the MP2/6-311 + G(2d,p)//B3LYP/3-21G(d) level of theory). Cystine and its C-terminal derivatives were observed to fragment via a range of pathways, including loss of neutral molecules, amide bond cleavage, and S-S and C-S bond cleavages. Various mechanisms were considered to rationalize S-S and C-S bond cleavage processes, including charge directed neighboring group processes and nonmobile proton salt bridge mechanism. Three low-energy fragmentation pathways were identified from theoretical calculations on cystine N-methyl amide: (1) S-S bond cleavage dominated by a neighboring group process involving the C-terminal amide N to form either a protonated cysteine derivative or protonated sulfenyl amide product ion (44.3 kcal mol(-1)); (2) C-S bond cleavage via a salt bridge mechanism, involving abstraction of the alpha-hydrogen by the N-terminal amino group to form a protonated thiocysteine derivative (35.0 kcal mol(-1)); and (3) C-S bond cleavage via a Grob-like fragmentation process in which the nucleophilic N-terminal amino group forms a protonated dithiazolidine (57.9 kcal mol(-1)). Interestingly, C-S bond cleavage by neighboring group processes have high activation barriers (63.1 kcal mol(-1)) and are thus not expected to be accessible during low-energy CID experiments. In comparison to the energetics of simple amide bond cleavage, these S-S and C-S bond cleavage reactions are higher in energy, which helps rationalize why bond cleavage processes involving the disulfide bond are rarely observed for low-energy CID of peptides with mobile proton(s) containing intermolecular disulfide bonds. On the other hand, the absence of a mobile proton appears to "switch on" disulfide bond cleavage reactions, which can be rationalized by the salt bridge mechanism. This potentially has important ramifications in explaining the prevalence of disulfide bond cleavage in singly protonated peptides under MALDI conditions.  相似文献   

18.
A strategy for improving the sequencing of peptides by infrared multiphoton dissociation (IRMPD) in a linear ion trap mass spectrometer is described. We have developed an N-terminal derivatization reagent, 4-methylphosphonophenylisothiocyanate (PPITC), which allows the attachment of an IR-chromogenic phosphonite group to the N-terminus of peptides, thus enhancing their IRMPD efficiencies. After the facile derivatization process, the PPITC-modified peptides require shorter irradiation times for efficient IRMPD and yield extensive series of y ions, including those of low m/z that are not detected upon traditional CID. The resulting IRMPD mass spectra afford more complete sequence coverage for both model peptides and tryptic peptides from cytochrome c. We compare the effectiveness of this derivatization/IRMPD approach to that of a common N-terminal sulfonation reaction that utilizes 4-sulfophenylisothiocyanate (SPITC) in conjunction with CID and IRMPD.  相似文献   

19.
We report the application of nanoelectrospray ionization tandem mass spectrometry (nES-MS/MS) and capillary LC/microelectrospray MS/MS (cLC/&mgr;ES-MS/MS) for sequencing sulfonic acid derivatized tryptic peptides. These derivatives were specifically prepared to facilitate low-energy charge-site-initiated fragmentation of C-terminal arginine-containing peptides, and to enhance the selective detection of a single series of y-type fragment ions. Both singly and doubly protonated peptides were analyzed by MS/MS and the results were compared with those from their derivatized counterparts. Model peptides and peptides from tryptic digests of gel-isolated proteins were analyzed. Derivatized singly protonated peptides fragment in the same way by nES-MS/MS as they do by post-source decay matrix-assisted laser desorption/ionization mass spectrometry (PSD-MALDI-MS). They produce fragment ion spectra dominated by y-ions, and the simplified spectra are readily interpreted de novo. Doubly protonated peptides fragment in much the same way as their non-derivatized doubly protonated counterparts. The fragmentation of doubly protonated derivatives is especially useful for sequencing peptides that possess a proline residue near the N-terminus of the molecule. The singly protonated forms of these proline-containing derivatives often show enhanced fragmentation on the N-terminal side of the proline and considerably reduced fragmentation on the C-terminal side. In addition, sulfonic acid derivatization increases the in-source fragmentation of arginine-containing peptides. This could be useful for sequence verification and sequence tagging for use in single stage mass spectrometry. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

20.
Optimized procedures have been developed for the addition of sulfonic acid groups to the N-termini of low-level peptides. These procedures have been applied to peptides produced by tryptic digestion of proteins that have been separated by two-dimensional (2-D) gel electrophoresis. The derivatized peptides were sequenced using matrix-assisted laser desorption/ionization (MALDI) post-source decay (PSD) and electrospray ionization-tandem mass spectrometry methods. Reliable PSD sequencing results have been obtained starting with sub-picomole quantities of protein. We estimate that the current PSD sequencing limit is about 300 fmol of protein in the gel. The PSD mass spectra of the derivatized peptides usually allow much more specific protein sequence database searches than those obtained without derivatization. We also report initial automated electrospray ionization-tandem mass spectrometry sequencing of these novel peptide derivatives. Both types of tandem mass spectra provide predictable fragmentation patterns for arginine-terminated peptides. The spectra are easily interpreted de novo, and they facilitate error-tolerant identification of proteins whose sequences have been entered into databases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号