首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Corroles, ring-contracted analogs of porphyrins, are an important class of compounds which have attracted the attention of many researchers in the fields of organic, coordination and physical chemistry. In the present work, the stability and the decomposition pathways of a diverse set of meso-substituted corroles have been studied using mass spectrometry (MS), UV-Vis absorption and preparative methods combined with NMR spectroscopy. Four different ionization methods (electrospray ionization, field desorption, atmospheric pressure photoionization and atmospheric pressure chemical ionization) were utilized to investigate light- and oxygen-induced decomposition in various solvents. It was found that the rate of decomposition in MeCN is significantly higher than in CH(2)Cl(2), hexane, MeOH and ethyl acetate. HR-MS combined with CID-MS/MS enabled us to identify the products of initial decomposition. Surprisingly, numerous smaller open-chain compounds were also detected. Large-scale decomposition of a corrole bearing sterically hindered substituents at positions 5 and 15 allowed us to isolate mg quantities of three decomposition products: isocorrole and isomeric biliverdin-type species. These are formed as a result of oxygen attack on the meso-10 position.  相似文献   

3.
Over the past decade, aerosol mass spectrometry has developed into a powerful method for characterizing individual particles in air. Recent advances in the design of inlets and mass spectrometers have extended the size range of particles that can be analyzed. In this tutorial, fundamental aspects of particle motion in sampling inlets are introduced. Basic experimental configurations for achieving a high analysis rate and the ability of laser ablation to provide chemical composition information are reviewed. An example of the use of this technology to study atmospheric phenomena is also presented. Significant opportunity exists for designing new experiments at the interface of aerosol mass spectrometry and conventional molecular mass spectrometry.  相似文献   

4.
The porphyrinoids chemistry is greatly dependent on the data obtained in mass spectrometry. For this reason, it is essential to determine the range of applicability of mass spectrometry ionization methods. In this study, the sensitivity of three different atmospheric pressure ionization techniques, electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization, was tested for several porphyrinods and their metallocomplexes. Electrospray ionization method was shown to be the best ionization technique because of its high sensitivity for derivatives of cyanocobalamin, free‐base corroles and porphyrins. In the case of metallocorroles and metalloporphyrins, atmospheric pressure photoionization with dopant proved to be the most sensitive ionization method. It was also shown that for relatively acidic compounds, particularly for corroles, the negative ion mode provides better sensitivity than the positive ion mode. The results supply a lot of relevant information on the methodology of porphyrinoids analysis carried out by mass spectrometry. The information can be useful in designing future MS or liquid chromatography–MS experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
南京夏季大气有机气溶胶老化过程在线观测研究   总被引:3,自引:0,他引:3  
大气有机气溶胶(OA)老化过程的在线观测是气溶胶化学研究领域的难点之一.本研究应用颗粒物化学组分监测仪(ACSM)对南京夏季城区大气非难熔性亚微米细颗粒物(NR-PM1)组分进行在线连续观测,并利用ACSM观测出的特征碎片离子,即f44(m/z 44与总OA的质谱信号之比)与f57(m/z 57与总OA的质谱信号之比)间的函数关系(f44 vs f57)及变化规律来动态估计大气中烃类有机气溶胶(HOA)的老化过程.结果表明:观测期间NR-PM1平均质量浓度为19.87±8.46μg m-3,其中OA占比最大(51.8%),且OA中氧化态有机气溶胶(OOA)的贡献较大(72%±0.14%).OOA,Ox(Ox=O3+NO2)的质量浓度与OOA/ΔCO(ΔCO是去除CO背景值后的质量浓度)呈相似的日变化规律,表明OOA的生成过程主要受大气光化学活性的影响.在f44 vs f57中,OOA/ΔCO和Ox质量浓度随f44的增大而逐渐增大,而HOA/ΔCO和HOA/OA的大小随f44的增大逐渐减小.这些特征反映出HOA通过光化学反应作用逐渐向OOA转化的过程.此外,利用f57的变化规律估算大气中HOA所需的老化时间约为5~10 h.本文为外场观测中动态长期地研究大气气溶胶的老化进程及其寿命提供一种新思路和方法.  相似文献   

6.
Polymer manufacturers add antioxidants, waxes, dyes, and other materials to enhance polymer utility or processing. Numerous analytical methods are available to characterize various chemical aspects of polymers including methods interfaced with mass spectrometry (MS) such as pyrolysis (Py), gas chromatography (GC), liquid chromatography (LC), and thermogravimetric analysis (TGA). Current methods work well, but because of the necessity of extraction, chromatography, or thermal methods, most are too time consuming for high throughput analyses which might be necessary in, for example, regulatory laboratories. Here we discuss three MS methods for rapid analysis of polymers; multi-sample MALDI MS which allows rapid analysis of low molecular weight polymers, atmospheric pressure (AP) solids analysis probe MS for direct ambient additives analysis, and APPy MS for polymer identification. The latter methods provide information regardless of the composition or molecular weight of the polymeric material.  相似文献   

7.
The extended photooxidation of and secondary organic aerosol (SOA) formation from dodecane (C(12)H(26)) under low-NO(x) conditions, such that RO(2) + HO(2) chemistry dominates the fate of the peroxy radicals, is studied in the Caltech Environmental Chamber based on simultaneous gas and particle-phase measurements. A mechanism simulation indicates that greater than 67% of the initial carbon ends up as fourth and higher generation products after 10 h of reaction, and simulated trends for seven species are supported by gas-phase measurements. A characteristic set of hydroperoxide gas-phase products are formed under these low-NO(x) conditions. Production of semivolatile hydroperoxide species within three generations of chemistry is consistent with observed initial aerosol growth. Continued gas-phase oxidation of these semivolatile species produces multifunctional low volatility compounds. This study elucidates the complex evolution of the gas-phase photooxidation chemistry and subsequent SOA formation through a novel approach comparing molecular level information from a chemical ionization mass spectrometer (CIMS) and high m/z ion fragments from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Combination of these techniques reveals that particle-phase chemistry leading to peroxyhemiacetal formation is the likely mechanism by which these species are incorporated in the particle phase. The current findings are relevant toward understanding atmospheric SOA formation and aging from the "unresolved complex mixture," comprising, in part, long-chain alkanes.  相似文献   

8.
While atmospheric pressure ionization methodologies have revolutionized the mass spectrometric analysis of nonvolatile analytes, limitations native to the chemistry of these methodologies hinder or entirely inhibit the analysis of certain analytes, specifically, many nonpolar compounds. Examination of various analytes, including asphaltene and lignin model compounds as well as saturated hydrocarbons, demonstrates that atmospheric pressure chemical ionization (APCI) using CS2 as the reagent produces an abundant and stable molecular ion (M+?) for all model compounds studied, with the exception of completely saturated aliphatic hydrocarbons and the two amino acids tested, arginine and phenylalanine. This reagent substantially broadens the applicability of mass spectrometry to nonvolatile nonpolar analytes and also facilitates the examination of radical cation chemistry by mass spectrometry. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
P Roepstorff 《The Analyst》1992,117(3):299-303
Plasma desorption and fast atom bombardment mass spectrometry have in the last decade demonstrated the potential of mass spectrometry for protein studies. The recently developed matrix-assisted laser desorption and electrospray mass spectrometry have expanded the analytical potential of mass spectrometry to cover nearly all proteins. The type of information obtained with the four methods is described and their performances are compared. The potential of combining mass spectrometric relative molecular mass information on proteins with the information contained in protein sequence databases is outlined and some typical fields of application of mass spectrometry in protein chemistry are described. The need for the full integration of mass spectrometry in the protein laboratory is discussed.  相似文献   

10.
Two basic reasons are proposed for the tremendous success and future promise of mass spectrometry: (1) the unusually high volume of data obtainable from unusually small samples and (2) the success in converting these data into structural and quantitative information. The ion abundance dimension of mass spectrometric data is remarkable in its pico-to-ttogram sensitivity and >106 dynamic range, and the mass scale dimension is uniquely high in the number of resolution increments for larger molecule ionization and high resolution. Additional dimensions of data arise from chromatographic coupling to mass spectrometry and tandem mass spectrometry, as well as from alternative ionization and ion reaction methods. Converting these data into chemical information is equally important. Past progress in these areas has been cyclical; for the immediate future a greater research emphasis is urged to convert data to information through better understanding of the relevant chemistry and better utilization of modern computer methods.  相似文献   

11.
Gas-phase experiments with state-of-the-art techniques of mass spectrometry provide detailed insights into numerous elementary processes. The focus of this Review is on elementary reactions of ions that achieve complete catalytic cycles under thermal conditions. The examples chosen cover aspects of catalysis pertinent to areas as diverse as atmospheric chemistry and surface chemistry. We describe how transfer of oxygen atoms, bond activation, and coupling of fragments can be mediated by atomic or cluster metal ions. In some cases truly unexpected analogies of the idealized gas-phase ion catalysis can be drawn with related chemical transformations in solution or the solid state, and so improve our understanding of the intrinsic operation of a practical catalyst at a strictly molecular level.  相似文献   

12.
Fourteen different crude oil samples were analyzed as collected by mass spectrometry. For two of them the results obtained by means of different techniques, i.e. electrospray ionization, atmospheric pressure chemical ionization, laser desorption/ionization, were compared. The latter technique leads to the best results: even if unable to give specific information on heteroatom-containing components, it allows a general view to be obtained of the panorama of the oil composition in terms of molecular weight distribution. The statistical evaluation of the mass spectrometry data by multivariate techniques, such as cluster analysis (Average Linkage) and correspondence analysis, allows evidence for the differences and similarities among the crude oils under study.  相似文献   

13.
Mass spectrometry has recently played a key role in the understanding of natural organic matter (NOM) by providing molecular-level details about its composition. NOM, a complex assemblage of organic molecules present in natural waters and soils/sediments, has the ability to bind and transport anthropogenic materials. An improved understanding of its composition is crucial in order to understand how pollutants interact with NOM and how NOM cycles through global carbon cycles. In the past, low-resolution (>3000) mass analyzers have offered some insights into the structure of NOM, but emerging ultrahigh resolution (>200,000) techniques such as electrospray ionization (ESI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) have significantly advanced our knowledge of NOM chemistry. Here, a review of the recent literature on the advancements of NOM characterization and the applications of mass spectrometry to this central task is presented. Various methods for the analysis and display of the extremely complex mass spectra, such as the van Krevelen diagram and Kendrick mass defect analysis, are discussed. We also review tandem mass spectrometry techniques employed to gain structural information about NOM components. Finally, we show how ESI-FT-ICR-MS has been applied to examine specific issues that are important to the NOM scientific community, such as NOM reactivity, transport and fate, degradation, and existence of components, which are indicators of NOM origin. In general, ultrahigh resolution provided by FT-ICR-MS is essential for the complete separation of the thousands of peaks present in the complex NOM mixture and will clearly lead to additional future advancements in the areas of aquatic, soil, and analytical chemistry.  相似文献   

14.
Tetravalent thorium exhibits a strong tendency towards hydrolysis and subsequent polymerization. Polymeric species play a crucial role in understanding thorium solution chemistry, since their presence causes apparent solubility several orders of magnitude higher than predicted by thermodynamic data bases. Although electrospray mass spectrometry (ESI MS) identifies Th(iv) dimers and pentamers unequivocally as dominant species close to the solubility limit, the molecular structure of Th(5)(OH)(y) polymers was hitherto unknown. In the present study, X-ray absorption fine structure (XAFS) spectroscopy, high energy X-ray scattering (HEXS) measurements, and quantum chemical calculations are combined to solve the pentamer structure. The most favourable structure is represented by two Th(iv) dimers linked by a central Th(iv) cation through hydroxide bridges.  相似文献   

15.
Electrospray ionization (ESI) combined with ultra-high-resolution mass spectrometry on a Fourier transform ion cyclotron resonance mass spectrometer has been shown to be a very powerful tool for the analysis of fulvic and humic acids and of natural organic matter (NOM) at the molecular level. With this technique thousands of ions can be separated from each other and their m/z ratio determined with sufficient accuracy to allow molecular formula calculation. Organic biogeochemistry, water chemistry, and atmospheric chemistry greatly benefit from this technique. Methodical aspects concerning the application of Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) to NOM isolated from surface water, groundwater, marine waters, and soils as well as from secondary organic aerosol in the atmospheric are reviewed. Enrichment of NOM and its chromatographic separation as well as possible influences of the ionization process on the appearance of the mass spectra are discussed. These steps of the analytical process require more systematic investigations. A basic drawback, however, is the lack of well defined single reference compounds of NOM or fulvic acids. Approaches of molecular formula calculation from the mass spectrometric data are reviewed and available graphical presentation methods are summarized. Finally, unsolved issues that limit the quality of data generated by FTICR-MS analysis of NOM are elaborated. It is concluded that further development in NOM enrichment and chromatographic separation is required and that tools for data analysis, data comparison and data visualization ought to be improved to make full use of FTICR-MS in NOM analysis.  相似文献   

16.
Based on ion trap mass spectrometry, an on-line method is described which provides valuable information on the molecular composition of structurally complex organic aerosols. The investigated aerosols were generated from the gas-phase ozonolysis of various C(10)H(16)-terpenes (alpha-pinene, beta-pinene, 3-carene, sabinene, limonene), and directly introduced into the ion source of the mass spectrometer. Negative ion chemical ionisation at atmospheric pressure (APCI(-)) enabled the detection of multifunctional carboxylic acid products by combining inherent sensitivity and molecular weight information. Sequential low-energy collision-induced product ion fragmentation experiments (MS(n)) were performed in order to elucidate characteristic decomposition pathways of the compounds. Dicarboxylic acids, oxocarboxylic acids and hydroxyketocarboxylic acid products could be clearly distinguished by multistage on-line MS. Furthermore, sabinonic acid and two C(9)-ether compounds were tentatively identified for the first time by applying on-line APCI(-)-MS(n).  相似文献   

17.
The surface chemical compositions of solid samples from environmental and geological sources can differ from the bulk or average compositions, because of changes caused by adsorption, dissolution, oxidation, etc. Accordingly, analytical information on surface layers is important for a better understanding of the environmental chemistry involving solid surfaces. The rapid development of surface-analytical techniques has enabled us to probe the surface chemistry of environmental and geological solid samples of complex composition. This article demonstrates some examples of important items of information that can be obtained by applying surface-analytical techniques, such as X-ray photoelectron spectroscopy and secondary ion mass spectrometry, to environmental and geological samples. The surface analysis of fly ashes, soils, sediments and weathered silicate minerals is reviewed.  相似文献   

18.
The combination of multiplexed mass spectrometry with photoionization by tunable-synchrotron radiation has proved to be a powerful tool to investigate elementary reaction kinetics and the chemistry of low-pressure flames. In both of these applications, multiple-mass detection and the ease of tunability of synchrotron radiation make it possible to acquire full sets of data as a function of mass, photon energy, and of the physical dimension of the system, e.g. distance from the burner or time after reaction initiation. The data are in essence an indirect image of the chemistry. The data can be quantitatively correlated and integrated along any of several dimensions to compare to traditional measurements such as time or distance profiles of individual chemical species, but it can also be directly interpreted in image form. This perspective offers an overview of flame chemistry and chemical kinetics measurements that combine tunable photoionization with multiple-mass detection, emphasizing the overall insight that can be gained from multidimensional data on these systems. The low-pressure flame apparatus is capable of providing isomer-resolved mass spectra of stable and radical species as a function of position in the flame. The overall chemical structure of the flames can be readily seen from images of the evolving mass spectrum as distance from the burner increases, with isomer-specific information given in images of the photoionization efficiency. Several flames are compared in this manner, with a focus on identification of global differences in fuel-decomposition and soot-formation pathways. Differences in the chemistry of flames of isomeric fuels can be discerned. The application of multiplexed synchrotron photoionization to elementary reaction kinetics permits identification of time-resolved isomeric composition in reacting systems. The power of this technique is illustrated by the separation of direct and dissociative ionization signals in the reaction of C(2)H(5) with O(2); by the resolution of isomeric products in reactions of the ethynyl (C(2)H) radical; and by preliminary observation of branching to methyl + propargyl products in the self-reaction of vinyl radicals. Finally, prospects for future research using multiplexed photoionization mass spectrometry are explored.  相似文献   

19.
This is a metabolomics study for monitoring altered amino acid (AA) and organic acid (OA) metabolism of in eyes from aging an mouse model at 8 and 18 weeks and 18 months. Simultaneous metabolic profiling analysis of OAs and AAs was performed as ethoxycarbonyl/methoxime/tert-butyldimethylsilyl derivatives by gas chromatography–tandem mass spectrometry. A total of 42 metabolites—24 AAs and 18 OAs—were determined and their composition values were normalized to the corresponding mean values of 8-week-old mice as the control group. Then their normalized values were plotted as star graphs, which were distorted and readily distinguishable for each age-related group. Among the 42 metabolites, 18 AAs and 11 OAs were age dependent and significantly different (p < 0.05). Principal component analysis and partial least squares discriminant analysis showed unclear separation between 8- and 18-week-old mice but clear separation between these and 18-month-old mice. In particular, the variable importance in projection scores of 4-hydroxyproline, cis-aconitic acid, glycine, isocitric acid, leucine, pipecolic acid and lysine from partial least-squares–discriminant analysis were higher than 1.3. A heatmap for the classification and visualization of 42 metabolites showed differences in metabolite changes with aging. Altered AA and OA profiles were monitored, which may explain the metabolic disturbance of AA and OA. These findings are related to mitochondrial dysfunctions related to energy metabolism and the impaired antioxidant system in the aging eye. Therefore, the present metabolomics results of the association between physiological states and altered metabolism of AA and OA will be useful for understanding the aging eye and related diseases.  相似文献   

20.
The widespread use and questionable environmental acceptability of nonionic surfactants make the alkylphenol ethoxylates (APEOs) and their neutral and acidic degradation products a focus of interest in environmental analytical chemistry. The characterization and especially quantification of polyethoxylate mixtures in environmental matrices is a challenge, because of the complexity of the mixtures. A review on trace analysis of APEOs using atmospheric pressure ionization mass spectrometry, including sample preparation and liquid chromatographic separation, is presented. In this Special Feature, the performances of two ionization methods, atmospheric pressure chemical ionization and electrospray ionization, is discussed in terms of selectivity and sensitivity toward oligomeric mixtures of APEOs. Capabilities and limitations associated with the liquid chromatographic/mass spectrometric detection of APEOs, their main degradation products and their halogenated metabolites, and also specific issues related to the sample preparation, formation of fragments, adducts and cluster ions, quantification of oligomeric mixtures and signal suppression effects in complex matrices, are discussed. Conclusions and future perspectives are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号